Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313397658> ?p ?o ?g. }
- W4313397658 endingPage "102517" @default.
- W4313397658 startingPage "102517" @default.
- W4313397658 abstract "Proteins sample an ensemble of conformers under physiological conditions, having access to a spectrum of modes of motions, also called intrinsic dynamics. These motions ensure the adaptation to various interactions in the cell, and largely assist in, if not determine, viable mechanisms of biological function. In recent years, machine learning frameworks have proven uniquely useful in structural biology, and recent studies further provide evidence to the utility and/or necessity of considering intrinsic dynamics for increasing their predictive ability. Efficient quantification of dynamics-based attributes by recently developed physics-based theories and models such as elastic network models provides a unique opportunity to generate data on dynamics for training ML models towards inferring mechanisms of protein function, assessing pathogenicity, or estimating binding affinities." @default.
- W4313397658 created "2023-01-06" @default.
- W4313397658 creator A5003311977 @default.
- W4313397658 creator A5037598883 @default.
- W4313397658 creator A5042541670 @default.
- W4313397658 creator A5043621505 @default.
- W4313397658 creator A5081814496 @default.
- W4313397658 date "2023-02-01" @default.
- W4313397658 modified "2023-10-17" @default.
- W4313397658 title "Mutually beneficial confluence of structure-based modeling of protein dynamics and machine learning methods" @default.
- W4313397658 cites W1563940013 @default.
- W4313397658 cites W1980961615 @default.
- W4313397658 cites W2008027871 @default.
- W4313397658 cites W2013768168 @default.
- W4313397658 cites W2015469836 @default.
- W4313397658 cites W2015610139 @default.
- W4313397658 cites W2033350048 @default.
- W4313397658 cites W2059145105 @default.
- W4313397658 cites W2069777230 @default.
- W4313397658 cites W2101017457 @default.
- W4313397658 cites W2103388411 @default.
- W4313397658 cites W2112033855 @default.
- W4313397658 cites W2113994268 @default.
- W4313397658 cites W2119742986 @default.
- W4313397658 cites W2124483575 @default.
- W4313397658 cites W2125359610 @default.
- W4313397658 cites W2159884214 @default.
- W4313397658 cites W2160729005 @default.
- W4313397658 cites W2160975112 @default.
- W4313397658 cites W2168798454 @default.
- W4313397658 cites W2169632544 @default.
- W4313397658 cites W2172034373 @default.
- W4313397658 cites W2245592118 @default.
- W4313397658 cites W2728165287 @default.
- W4313397658 cites W2783073729 @default.
- W4313397658 cites W2796386151 @default.
- W4313397658 cites W2804523481 @default.
- W4313397658 cites W2881801033 @default.
- W4313397658 cites W2885079199 @default.
- W4313397658 cites W2940537888 @default.
- W4313397658 cites W2943628534 @default.
- W4313397658 cites W2951264695 @default.
- W4313397658 cites W2952072077 @default.
- W4313397658 cites W2971690404 @default.
- W4313397658 cites W2991039860 @default.
- W4313397658 cites W2998620327 @default.
- W4313397658 cites W3007271099 @default.
- W4313397658 cites W3007942792 @default.
- W4313397658 cites W3012594289 @default.
- W4313397658 cites W3036387766 @default.
- W4313397658 cites W3037203467 @default.
- W4313397658 cites W3039124487 @default.
- W4313397658 cites W3083008290 @default.
- W4313397658 cites W3092186060 @default.
- W4313397658 cites W3093944744 @default.
- W4313397658 cites W3098321015 @default.
- W4313397658 cites W3099423575 @default.
- W4313397658 cites W3107992118 @default.
- W4313397658 cites W3112468720 @default.
- W4313397658 cites W3112595622 @default.
- W4313397658 cites W3123287010 @default.
- W4313397658 cites W3128777856 @default.
- W4313397658 cites W3132448805 @default.
- W4313397658 cites W3157271872 @default.
- W4313397658 cites W3159156584 @default.
- W4313397658 cites W3160704433 @default.
- W4313397658 cites W3162614523 @default.
- W4313397658 cites W3164662464 @default.
- W4313397658 cites W3168430821 @default.
- W4313397658 cites W3175192864 @default.
- W4313397658 cites W3177828909 @default.
- W4313397658 cites W3189465577 @default.
- W4313397658 cites W3207730481 @default.
- W4313397658 cites W3209435229 @default.
- W4313397658 cites W3209764902 @default.
- W4313397658 cites W3211795435 @default.
- W4313397658 cites W4200580850 @default.
- W4313397658 cites W4205278093 @default.
- W4313397658 cites W4206900467 @default.
- W4313397658 cites W4220892969 @default.
- W4313397658 cites W4224291878 @default.
- W4313397658 cites W4224312165 @default.
- W4313397658 cites W4225620070 @default.
- W4313397658 doi "https://doi.org/10.1016/j.sbi.2022.102517" @default.
- W4313397658 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36587424" @default.
- W4313397658 hasPublicationYear "2023" @default.
- W4313397658 type Work @default.
- W4313397658 citedByCount "7" @default.
- W4313397658 countsByYear W43133976582023 @default.
- W4313397658 crossrefType "journal-article" @default.
- W4313397658 hasAuthorship W4313397658A5003311977 @default.
- W4313397658 hasAuthorship W4313397658A5037598883 @default.
- W4313397658 hasAuthorship W4313397658A5042541670 @default.
- W4313397658 hasAuthorship W4313397658A5043621505 @default.
- W4313397658 hasAuthorship W4313397658A5081814496 @default.
- W4313397658 hasBestOaLocation W43133976581 @default.
- W4313397658 hasConcept C119857082 @default.
- W4313397658 hasConcept C121332964 @default.