Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313397720> ?p ?o ?g. }
- W4313397720 endingPage "679" @default.
- W4313397720 startingPage "679" @default.
- W4313397720 abstract "Exploring the intention to prepare for mitigation among Filipinos should be considered as the Philippines is a country prone to natural calamities. With frequent earthquakes occurring in the country, “The Big One” has been predicted to damage the livelihood and infrastructure of the capital and surrounding cities. This study aimed to predict the intention to prepare for mitigation (IP) of “The Big One” based on several features using a machine learning algorithm ensemble. This study applied a decision tree, a random forest classifier, and artificial neural network algorithms to classify affecting factors. Data were collected using convenience sampling through a self-administered questionnaire with 683 valid responses. The results of this study and the proposed machine learning-based prediction model could be applied to predict the intention of younger Filipinos to prepare. The experimental results also revealed that the decision tree and the decision tree with random forest classifier showed understanding, perceived vulnerability, and perceived severity as factors highly affecting the IP of “The Big One”. The results of this study could be considered by the government to promote policies and guidelines to enhance the people’s IP for natural disasters. The algorithm could also be utilized and applied to determine factors affecting IP for other natural disasters, even in other countries." @default.
- W4313397720 created "2023-01-06" @default.
- W4313397720 creator A5046092614 @default.
- W4313397720 creator A5071243490 @default.
- W4313397720 creator A5071293700 @default.
- W4313397720 date "2022-12-30" @default.
- W4313397720 modified "2023-09-30" @default.
- W4313397720 title "“The Big One” Earthquake Preparedness Assessment among Younger Filipinos Using a Random Forest Classifier and an Artificial Neural Network" @default.
- W4313397720 cites W1991306264 @default.
- W4313397720 cites W2020516950 @default.
- W4313397720 cites W2028124403 @default.
- W4313397720 cites W2078840559 @default.
- W4313397720 cites W2087244178 @default.
- W4313397720 cites W2093373096 @default.
- W4313397720 cites W2551658670 @default.
- W4313397720 cites W2599003882 @default.
- W4313397720 cites W2760962259 @default.
- W4313397720 cites W2770407717 @default.
- W4313397720 cites W2790818337 @default.
- W4313397720 cites W2889679918 @default.
- W4313397720 cites W2953468274 @default.
- W4313397720 cites W2959400106 @default.
- W4313397720 cites W2962834855 @default.
- W4313397720 cites W2963273475 @default.
- W4313397720 cites W2963351669 @default.
- W4313397720 cites W2987144017 @default.
- W4313397720 cites W2991336573 @default.
- W4313397720 cites W2995368577 @default.
- W4313397720 cites W2995889543 @default.
- W4313397720 cites W2997028558 @default.
- W4313397720 cites W3001604145 @default.
- W4313397720 cites W3010030784 @default.
- W4313397720 cites W3011445245 @default.
- W4313397720 cites W3020081599 @default.
- W4313397720 cites W3025416923 @default.
- W4313397720 cites W3037147010 @default.
- W4313397720 cites W3037341137 @default.
- W4313397720 cites W3037758046 @default.
- W4313397720 cites W3038306520 @default.
- W4313397720 cites W3040291884 @default.
- W4313397720 cites W3041527567 @default.
- W4313397720 cites W3047870835 @default.
- W4313397720 cites W3081971232 @default.
- W4313397720 cites W3082134715 @default.
- W4313397720 cites W3083733044 @default.
- W4313397720 cites W3087225859 @default.
- W4313397720 cites W3087801650 @default.
- W4313397720 cites W3105311410 @default.
- W4313397720 cites W3107987587 @default.
- W4313397720 cites W3112424130 @default.
- W4313397720 cites W3120400911 @default.
- W4313397720 cites W3129935754 @default.
- W4313397720 cites W3132064345 @default.
- W4313397720 cites W3135865337 @default.
- W4313397720 cites W3159755396 @default.
- W4313397720 cites W3166365274 @default.
- W4313397720 cites W3184071377 @default.
- W4313397720 cites W3185840992 @default.
- W4313397720 cites W4280617311 @default.
- W4313397720 cites W4285043979 @default.
- W4313397720 cites W4294969751 @default.
- W4313397720 cites W4295412663 @default.
- W4313397720 cites W27202313 @default.
- W4313397720 doi "https://doi.org/10.3390/su15010679" @default.
- W4313397720 hasPublicationYear "2022" @default.
- W4313397720 type Work @default.
- W4313397720 citedByCount "4" @default.
- W4313397720 countsByYear W43133977202023 @default.
- W4313397720 crossrefType "journal-article" @default.
- W4313397720 hasAuthorship W4313397720A5046092614 @default.
- W4313397720 hasAuthorship W4313397720A5071243490 @default.
- W4313397720 hasAuthorship W4313397720A5071293700 @default.
- W4313397720 hasBestOaLocation W43133977201 @default.
- W4313397720 hasConcept C118518473 @default.
- W4313397720 hasConcept C119857082 @default.
- W4313397720 hasConcept C124101348 @default.
- W4313397720 hasConcept C153294291 @default.
- W4313397720 hasConcept C154945302 @default.
- W4313397720 hasConcept C166566181 @default.
- W4313397720 hasConcept C166957645 @default.
- W4313397720 hasConcept C169258074 @default.
- W4313397720 hasConcept C17744445 @default.
- W4313397720 hasConcept C199539241 @default.
- W4313397720 hasConcept C205649164 @default.
- W4313397720 hasConcept C2777042776 @default.
- W4313397720 hasConcept C3987366 @default.
- W4313397720 hasConcept C41008148 @default.
- W4313397720 hasConcept C45942800 @default.
- W4313397720 hasConcept C50644808 @default.
- W4313397720 hasConcept C5481197 @default.
- W4313397720 hasConcept C75684735 @default.
- W4313397720 hasConcept C84525736 @default.
- W4313397720 hasConcept C95623464 @default.
- W4313397720 hasConceptScore W4313397720C118518473 @default.
- W4313397720 hasConceptScore W4313397720C119857082 @default.
- W4313397720 hasConceptScore W4313397720C124101348 @default.
- W4313397720 hasConceptScore W4313397720C153294291 @default.
- W4313397720 hasConceptScore W4313397720C154945302 @default.