Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313398465> ?p ?o ?g. }
- W4313398465 endingPage "102157" @default.
- W4313398465 startingPage "102157" @default.
- W4313398465 abstract "We study a hybrid approach combining a finite volume (FV) and a finite element (FE) method to solve a fully-nonlinear and weakly-dispersive depth averaged wave propagation model. The FV method is used to solve the underlying hyperbolic shallow water system, while a standard P1 finite element method is used to solve the elliptic system associated to the dispersive correction. We study the impact of several numerical aspects: the impact of the reconstruction used in the hyperbolic phase; the representation of the FV data in the FE method used in the elliptic phase and their impact on the theoretical accuracy of the method; the well-posedness of the overall method. For the first element we proposed a systematic implementation of an iterative reconstruction providing on arbitrary meshes up to third order solutions, full second order first derivatives, as well as a consistent approximation of the second derivatives. These properties are exploited to improve the assembly of the elliptic solver, showing dramatic improvement of the finale accuracy, if the FV representation is correctly accounted for. Concerning the elliptic step, the original problem is usually better suited for an approximation in H(div) spaces. However, it has been shown that perturbed problems involving similar operators with a small Laplace perturbation are well behaved in H1. We show, based on both heuristic and strong numerical evidence, that numerical dissipation plays a major role in stabilizing the coupled method, and not only providing convergent results, but also providing the expected convergence rates. Finally, the full mode, coupling a wave breaking closure previously developed by the authors, is thoroughly tested on standard benchmarks using unstructured grids with sizes comparable or coarser than those usually proposed in literature." @default.
- W4313398465 created "2023-01-06" @default.
- W4313398465 creator A5039264307 @default.
- W4313398465 creator A5041837872 @default.
- W4313398465 creator A5082027942 @default.
- W4313398465 date "2023-04-01" @default.
- W4313398465 modified "2023-09-25" @default.
- W4313398465 title "Low dispersion finite volume/element discretization of the enhanced Green–Naghdi equations for wave propagation, breaking and runup on unstructured meshes" @default.
- W4313398465 cites W1856147739 @default.
- W4313398465 cites W1964757393 @default.
- W4313398465 cites W1967421663 @default.
- W4313398465 cites W1972361467 @default.
- W4313398465 cites W1974951261 @default.
- W4313398465 cites W1977607363 @default.
- W4313398465 cites W1979011427 @default.
- W4313398465 cites W1983036154 @default.
- W4313398465 cites W1986753639 @default.
- W4313398465 cites W1989891199 @default.
- W4313398465 cites W1991230420 @default.
- W4313398465 cites W1992520361 @default.
- W4313398465 cites W1995517422 @default.
- W4313398465 cites W1996468798 @default.
- W4313398465 cites W2006976276 @default.
- W4313398465 cites W2007233211 @default.
- W4313398465 cites W2012962399 @default.
- W4313398465 cites W2013332677 @default.
- W4313398465 cites W2016638303 @default.
- W4313398465 cites W2029678427 @default.
- W4313398465 cites W2043413584 @default.
- W4313398465 cites W2044902142 @default.
- W4313398465 cites W2055000799 @default.
- W4313398465 cites W2059824964 @default.
- W4313398465 cites W2068798260 @default.
- W4313398465 cites W2069250702 @default.
- W4313398465 cites W2069725849 @default.
- W4313398465 cites W2084765148 @default.
- W4313398465 cites W2091426174 @default.
- W4313398465 cites W2091525236 @default.
- W4313398465 cites W2093704834 @default.
- W4313398465 cites W2101731201 @default.
- W4313398465 cites W2105914422 @default.
- W4313398465 cites W2108202098 @default.
- W4313398465 cites W2109826025 @default.
- W4313398465 cites W2123259141 @default.
- W4313398465 cites W2137588198 @default.
- W4313398465 cites W2142789340 @default.
- W4313398465 cites W2144213950 @default.
- W4313398465 cites W2148003806 @default.
- W4313398465 cites W2149950906 @default.
- W4313398465 cites W2167916110 @default.
- W4313398465 cites W2181277443 @default.
- W4313398465 cites W2185262037 @default.
- W4313398465 cites W2296754410 @default.
- W4313398465 cites W2305446434 @default.
- W4313398465 cites W2479009080 @default.
- W4313398465 cites W2589527379 @default.
- W4313398465 cites W2611111188 @default.
- W4313398465 cites W2748394564 @default.
- W4313398465 cites W2810805689 @default.
- W4313398465 cites W2912806234 @default.
- W4313398465 cites W2955252836 @default.
- W4313398465 cites W2962847635 @default.
- W4313398465 cites W2998530657 @default.
- W4313398465 cites W3027673045 @default.
- W4313398465 cites W3033029753 @default.
- W4313398465 cites W3120487516 @default.
- W4313398465 cites W3121774748 @default.
- W4313398465 cites W3151009510 @default.
- W4313398465 cites W4239804518 @default.
- W4313398465 cites W4245037559 @default.
- W4313398465 cites W643444233 @default.
- W4313398465 doi "https://doi.org/10.1016/j.ocemod.2022.102157" @default.
- W4313398465 hasPublicationYear "2023" @default.
- W4313398465 type Work @default.
- W4313398465 citedByCount "0" @default.
- W4313398465 crossrefType "journal-article" @default.
- W4313398465 hasAuthorship W4313398465A5039264307 @default.
- W4313398465 hasAuthorship W4313398465A5041837872 @default.
- W4313398465 hasAuthorship W4313398465A5082027942 @default.
- W4313398465 hasBestOaLocation W43133984652 @default.
- W4313398465 hasConcept C121332964 @default.
- W4313398465 hasConcept C126255220 @default.
- W4313398465 hasConcept C134306372 @default.
- W4313398465 hasConcept C135628077 @default.
- W4313398465 hasConcept C158622935 @default.
- W4313398465 hasConcept C2524010 @default.
- W4313398465 hasConcept C2778770139 @default.
- W4313398465 hasConcept C28826006 @default.
- W4313398465 hasConcept C31487907 @default.
- W4313398465 hasConcept C33923547 @default.
- W4313398465 hasConcept C50478463 @default.
- W4313398465 hasConcept C57879066 @default.
- W4313398465 hasConcept C62520636 @default.
- W4313398465 hasConcept C73000952 @default.
- W4313398465 hasConcept C92244383 @default.
- W4313398465 hasConcept C97355855 @default.
- W4313398465 hasConceptScore W4313398465C121332964 @default.
- W4313398465 hasConceptScore W4313398465C126255220 @default.