Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313400416> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4313400416 endingPage "188" @default.
- W4313400416 startingPage "179" @default.
- W4313400416 abstract "Data mining and big data are today the world’s leading technology. These techniques deal with diabetes in the banking sector, health services, cyber-security, voting, insurance, the real state, etc. Diabetes is a constant disease before digestion, and wherever personality and total amount in the body of blood glucose is experienced, the formation of estrogens is also unsatisfactory, otherwise the carcass phones do not react properly to estrogens. The balance in high blood sugar diabetes is notorious for extensive stretch injuries, twitching, difficulty’s evolutionary structure of kidneys, heart, vein, nerves and eyes in particular. That is, the main purpose is to analyze consumption, plan a predictable outcome, using the technique of machine learning and position the classifying model with a medical outcome to the adjacent effect. The system mainly selects the features that make miserable diabetes mellitus in the early detection of extrapolative studies. Different results algorithms display the random forest as well as the decision tree algorithm with the greatest distinguishability of 97.20 and 97.30%. Discreetly, diabetics perform best inspection of information. Information. Naive Bayesian has an optimal outcome of precision of 85.43%. Similarly, the study provides a summary of the model highlights selected to develop the data collection precisely." @default.
- W4313400416 created "2023-01-06" @default.
- W4313400416 creator A5002688841 @default.
- W4313400416 creator A5004909453 @default.
- W4313400416 creator A5036773854 @default.
- W4313400416 creator A5063411048 @default.
- W4313400416 date "2023-01-01" @default.
- W4313400416 modified "2023-10-16" @default.
- W4313400416 title "A Novel Approach for Health Analysis Using Machine Learning Approaches" @default.
- W4313400416 cites W1947481528 @default.
- W4313400416 cites W2889838428 @default.
- W4313400416 cites W3088987762 @default.
- W4313400416 cites W3094891932 @default.
- W4313400416 cites W3097674592 @default.
- W4313400416 cites W3101667008 @default.
- W4313400416 cites W3173708604 @default.
- W4313400416 cites W3196871682 @default.
- W4313400416 cites W4229451349 @default.
- W4313400416 doi "https://doi.org/10.1007/978-981-19-6880-8_19" @default.
- W4313400416 hasPublicationYear "2023" @default.
- W4313400416 type Work @default.
- W4313400416 citedByCount "0" @default.
- W4313400416 crossrefType "book-chapter" @default.
- W4313400416 hasAuthorship W4313400416A5002688841 @default.
- W4313400416 hasAuthorship W4313400416A5004909453 @default.
- W4313400416 hasAuthorship W4313400416A5036773854 @default.
- W4313400416 hasAuthorship W4313400416A5063411048 @default.
- W4313400416 hasConcept C119857082 @default.
- W4313400416 hasConcept C12267149 @default.
- W4313400416 hasConcept C134018914 @default.
- W4313400416 hasConcept C144237770 @default.
- W4313400416 hasConcept C148220186 @default.
- W4313400416 hasConcept C154945302 @default.
- W4313400416 hasConcept C169258074 @default.
- W4313400416 hasConcept C33923547 @default.
- W4313400416 hasConcept C41008148 @default.
- W4313400416 hasConcept C52001869 @default.
- W4313400416 hasConcept C555293320 @default.
- W4313400416 hasConcept C71924100 @default.
- W4313400416 hasConcept C84525736 @default.
- W4313400416 hasConceptScore W4313400416C119857082 @default.
- W4313400416 hasConceptScore W4313400416C12267149 @default.
- W4313400416 hasConceptScore W4313400416C134018914 @default.
- W4313400416 hasConceptScore W4313400416C144237770 @default.
- W4313400416 hasConceptScore W4313400416C148220186 @default.
- W4313400416 hasConceptScore W4313400416C154945302 @default.
- W4313400416 hasConceptScore W4313400416C169258074 @default.
- W4313400416 hasConceptScore W4313400416C33923547 @default.
- W4313400416 hasConceptScore W4313400416C41008148 @default.
- W4313400416 hasConceptScore W4313400416C52001869 @default.
- W4313400416 hasConceptScore W4313400416C555293320 @default.
- W4313400416 hasConceptScore W4313400416C71924100 @default.
- W4313400416 hasConceptScore W4313400416C84525736 @default.
- W4313400416 hasLocation W43134004161 @default.
- W4313400416 hasOpenAccess W4313400416 @default.
- W4313400416 hasPrimaryLocation W43134004161 @default.
- W4313400416 hasRelatedWork W3032901101 @default.
- W4313400416 hasRelatedWork W3204641204 @default.
- W4313400416 hasRelatedWork W4283264067 @default.
- W4313400416 hasRelatedWork W4285407528 @default.
- W4313400416 hasRelatedWork W4289812785 @default.
- W4313400416 hasRelatedWork W4292865745 @default.
- W4313400416 hasRelatedWork W4312632137 @default.
- W4313400416 hasRelatedWork W4313070894 @default.
- W4313400416 hasRelatedWork W4383746529 @default.
- W4313400416 hasRelatedWork W4385864139 @default.
- W4313400416 isParatext "false" @default.
- W4313400416 isRetracted "false" @default.
- W4313400416 workType "book-chapter" @default.