Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313402788> ?p ?o ?g. }
- W4313402788 endingPage "19" @default.
- W4313402788 startingPage "1" @default.
- W4313402788 abstract "Particle swarm optimization is a popular meta-heuristic with highly explorative features; however, in its standard form it suffers from a poor convergence rate and weak search refinement on multi-dimensional problems. The present work improves the conventional particle swarm optimizer in three ways: adding a greedy selection for better intensification; embedding an extra movement borrowed from teacher–learner-based optimization; and utilizing a neighborhood strategy by averaging over a random half of the swarm. The performance of the proposed method is subsequently evaluated on three sets of problems. The first set includes uni-modal, multi-model, separable and non-separable test functions. The proposed method is compared with a standard particle swarm optimizer and its variants as well as other meta-heuristic algorithms. Engineering benchmark problems including the optimal design of a tubular column, a coiled spring, a pressure vessel and a cantilever beam constitute the second set. The third set includes constrained sizing design of a 120-bar dome truss and the optimal shape design of the Morrow Point double-arch concrete dam as a practical case study. Numerical results reveal considerable enhancement of the standard particle swarm via the proposed method to exhibit competitive performance with the other studied meta-heuristics. In the optimal design of Morrow Point Dam, the proposed method resulted in a material consumption 21 times smaller than the best of the initial population and 26% better than a recommended practical design." @default.
- W4313402788 created "2023-01-06" @default.
- W4313402788 creator A5019885946 @default.
- W4313402788 creator A5045421557 @default.
- W4313402788 date "2022-12-19" @default.
- W4313402788 modified "2023-09-23" @default.
- W4313402788 title "An Efficient Hybrid Particle Swarm and Teaching-Learning-Based Optimization for Arch-Dam Shape Design" @default.
- W4313402788 cites W1595159159 @default.
- W4313402788 cites W1748133846 @default.
- W4313402788 cites W1974915966 @default.
- W4313402788 cites W1984296381 @default.
- W4313402788 cites W1985334587 @default.
- W4313402788 cites W1986834168 @default.
- W4313402788 cites W1990966828 @default.
- W4313402788 cites W1998718501 @default.
- W4313402788 cites W2001422417 @default.
- W4313402788 cites W2001979953 @default.
- W4313402788 cites W2003890325 @default.
- W4313402788 cites W2025500642 @default.
- W4313402788 cites W2027382431 @default.
- W4313402788 cites W2034988449 @default.
- W4313402788 cites W2035898501 @default.
- W4313402788 cites W2039577332 @default.
- W4313402788 cites W2070234757 @default.
- W4313402788 cites W2088609193 @default.
- W4313402788 cites W2091638274 @default.
- W4313402788 cites W2109364787 @default.
- W4313402788 cites W2116204926 @default.
- W4313402788 cites W2119401655 @default.
- W4313402788 cites W2123158146 @default.
- W4313402788 cites W2126554879 @default.
- W4313402788 cites W2127864991 @default.
- W4313402788 cites W2131613989 @default.
- W4313402788 cites W2133686994 @default.
- W4313402788 cites W2143055330 @default.
- W4313402788 cites W2147271386 @default.
- W4313402788 cites W2151554678 @default.
- W4313402788 cites W2151886138 @default.
- W4313402788 cites W2152195021 @default.
- W4313402788 cites W2154943049 @default.
- W4313402788 cites W2160694855 @default.
- W4313402788 cites W2166928235 @default.
- W4313402788 cites W2169245194 @default.
- W4313402788 cites W2191258242 @default.
- W4313402788 cites W2253306495 @default.
- W4313402788 cites W2290883490 @default.
- W4313402788 cites W2306115793 @default.
- W4313402788 cites W252159245 @default.
- W4313402788 cites W2573137292 @default.
- W4313402788 cites W2606276573 @default.
- W4313402788 cites W2727612717 @default.
- W4313402788 cites W2738900493 @default.
- W4313402788 cites W2770249762 @default.
- W4313402788 cites W2797485770 @default.
- W4313402788 cites W2889545660 @default.
- W4313402788 cites W2897177582 @default.
- W4313402788 cites W2898658722 @default.
- W4313402788 cites W2901096225 @default.
- W4313402788 cites W2904387011 @default.
- W4313402788 cites W2919979744 @default.
- W4313402788 cites W2963103847 @default.
- W4313402788 cites W2963358003 @default.
- W4313402788 cites W2979774998 @default.
- W4313402788 cites W2981126078 @default.
- W4313402788 cites W2985845430 @default.
- W4313402788 cites W3011104345 @default.
- W4313402788 cites W3023527104 @default.
- W4313402788 cites W3040188519 @default.
- W4313402788 cites W3101667383 @default.
- W4313402788 cites W3123641332 @default.
- W4313402788 cites W3131964064 @default.
- W4313402788 cites W3159068915 @default.
- W4313402788 cites W3171696784 @default.
- W4313402788 cites W3215310854 @default.
- W4313402788 cites W4206037775 @default.
- W4313402788 cites W4242438026 @default.
- W4313402788 cites W4248655523 @default.
- W4313402788 cites W4285080189 @default.
- W4313402788 doi "https://doi.org/10.1080/10168664.2022.2129121" @default.
- W4313402788 hasPublicationYear "2022" @default.
- W4313402788 type Work @default.
- W4313402788 citedByCount "0" @default.
- W4313402788 crossrefType "journal-article" @default.
- W4313402788 hasAuthorship W4313402788A5019885946 @default.
- W4313402788 hasAuthorship W4313402788A5045421557 @default.
- W4313402788 hasConcept C109718341 @default.
- W4313402788 hasConcept C11413529 @default.
- W4313402788 hasConcept C122357587 @default.
- W4313402788 hasConcept C126255220 @default.
- W4313402788 hasConcept C13280743 @default.
- W4313402788 hasConcept C173801870 @default.
- W4313402788 hasConcept C177264268 @default.
- W4313402788 hasConcept C185798385 @default.
- W4313402788 hasConcept C199360897 @default.
- W4313402788 hasConcept C205649164 @default.
- W4313402788 hasConcept C33923547 @default.
- W4313402788 hasConcept C41008148 @default.
- W4313402788 hasConcept C85617194 @default.