Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313403774> ?p ?o ?g. }
- W4313403774 abstract "Reliable and quick estimation of wheat yellow rust (WYR) severity in field is essential to manage the disease and minimize the losses. Field experiments were conducted during 2017–18 and 2018–19 to obtain visible and thermal images of 24 wheat cultivars having different levels of WYR resistance at critical growth stages. Machine learning (ML) models were constructed using the combinations of image indices (IN) and partial least square regression (PLS) scores of image indices with disease severity (DS) and Yeo-Johnson (YJ) transformed values of disease severity. The results revealed that 26 visible and 2 thermal indices considered in this study have significant correlations with WYR. The models performances were evaluated using four possible dataset combinations of (1) disease severity + indices, (2) disease severity + PLS scores of indices, (3) YJ transformed disease severity + indices, and (4) YJ transformed disease severity + PLS scores. Disease severity with image derived indices was found to be the best dataset for the prediction of WYR severity using machine learning models with an R2 and d-index above 0.95 during calibration, while up to 0.67 and 0.87, respectively during validation. Cubist model with disease severity + indices dataset was the best to predict WYR severity, while the Gaussian process regression with YJ transformed disease severity + PLS scores dataset was the poorest predictor. The results obtained in the present study showed the potential of ML models for non-destructive prediction of WYR in field using visible and thermal imaging." @default.
- W4313403774 created "2023-01-06" @default.
- W4313403774 creator A5000017665 @default.
- W4313403774 creator A5041081967 @default.
- W4313403774 creator A5047836403 @default.
- W4313403774 creator A5047857286 @default.
- W4313403774 date "2023-01-02" @default.
- W4313403774 modified "2023-09-30" @default.
- W4313403774 title "Estimation of yellow rust severity in wheat using visible and thermal imaging coupled with machine learning models" @default.
- W4313403774 cites W1768257245 @default.
- W4313403774 cites W1964503221 @default.
- W4313403774 cites W1967320885 @default.
- W4313403774 cites W1973700570 @default.
- W4313403774 cites W1977780283 @default.
- W4313403774 cites W1989863789 @default.
- W4313403774 cites W2000932885 @default.
- W4313403774 cites W2012014449 @default.
- W4313403774 cites W2028241065 @default.
- W4313403774 cites W2039952872 @default.
- W4313403774 cites W2048387680 @default.
- W4313403774 cites W2064636932 @default.
- W4313403774 cites W2065814573 @default.
- W4313403774 cites W2068377282 @default.
- W4313403774 cites W2068778426 @default.
- W4313403774 cites W2082137964 @default.
- W4313403774 cites W2093020519 @default.
- W4313403774 cites W2102201073 @default.
- W4313403774 cites W2103959917 @default.
- W4313403774 cites W2112458566 @default.
- W4313403774 cites W2117063635 @default.
- W4313403774 cites W2123101917 @default.
- W4313403774 cites W2129032375 @default.
- W4313403774 cites W2132962848 @default.
- W4313403774 cites W2136701119 @default.
- W4313403774 cites W2136704614 @default.
- W4313403774 cites W2140959043 @default.
- W4313403774 cites W2148877877 @default.
- W4313403774 cites W2163450852 @default.
- W4313403774 cites W2166516660 @default.
- W4313403774 cites W2490548105 @default.
- W4313403774 cites W2621351181 @default.
- W4313403774 cites W2737457591 @default.
- W4313403774 cites W2787894218 @default.
- W4313403774 cites W2805142011 @default.
- W4313403774 cites W2809863894 @default.
- W4313403774 cites W2885299623 @default.
- W4313403774 cites W2892167904 @default.
- W4313403774 cites W2911964244 @default.
- W4313403774 cites W2914609490 @default.
- W4313403774 cites W2918084323 @default.
- W4313403774 cites W2920891036 @default.
- W4313403774 cites W2949060638 @default.
- W4313403774 cites W2969545732 @default.
- W4313403774 cites W2978267307 @default.
- W4313403774 cites W2998697012 @default.
- W4313403774 cites W3011612089 @default.
- W4313403774 cites W3038875616 @default.
- W4313403774 cites W3046551762 @default.
- W4313403774 cites W3047377467 @default.
- W4313403774 cites W3084116196 @default.
- W4313403774 cites W3085944235 @default.
- W4313403774 cites W3093950702 @default.
- W4313403774 cites W3117722799 @default.
- W4313403774 cites W3120426666 @default.
- W4313403774 cites W3126199928 @default.
- W4313403774 cites W3175759815 @default.
- W4313403774 cites W3178598619 @default.
- W4313403774 cites W3184166866 @default.
- W4313403774 cites W4200064788 @default.
- W4313403774 cites W4283018685 @default.
- W4313403774 cites W4291710846 @default.
- W4313403774 cites W4294541781 @default.
- W4313403774 cites W585276788 @default.
- W4313403774 doi "https://doi.org/10.1080/10106049.2022.2160831" @default.
- W4313403774 hasPublicationYear "2023" @default.
- W4313403774 type Work @default.
- W4313403774 citedByCount "3" @default.
- W4313403774 countsByYear W43134037742023 @default.
- W4313403774 crossrefType "journal-article" @default.
- W4313403774 hasAuthorship W4313403774A5000017665 @default.
- W4313403774 hasAuthorship W4313403774A5041081967 @default.
- W4313403774 hasAuthorship W4313403774A5047836403 @default.
- W4313403774 hasAuthorship W4313403774A5047857286 @default.
- W4313403774 hasBestOaLocation W43134037741 @default.
- W4313403774 hasConcept C105795698 @default.
- W4313403774 hasConcept C119857082 @default.
- W4313403774 hasConcept C126322002 @default.
- W4313403774 hasConcept C152877465 @default.
- W4313403774 hasConcept C154945302 @default.
- W4313403774 hasConcept C22354355 @default.
- W4313403774 hasConcept C2779134260 @default.
- W4313403774 hasConcept C33923547 @default.
- W4313403774 hasConcept C41008148 @default.
- W4313403774 hasConcept C45804977 @default.
- W4313403774 hasConcept C71924100 @default.
- W4313403774 hasConcept C83546350 @default.
- W4313403774 hasConceptScore W4313403774C105795698 @default.
- W4313403774 hasConceptScore W4313403774C119857082 @default.
- W4313403774 hasConceptScore W4313403774C126322002 @default.
- W4313403774 hasConceptScore W4313403774C152877465 @default.