Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313404304> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4313404304 abstract "Abstract Electricity infrastructures include assets that require frequent maintenance, as they are exposed into heavy use, in order to produce energy that satisfies customer demands. Such maintenance is currently performed by specialized personnel that is scaffolding to spot damages or malfunctioning equipment. Scaffolding is time-consuming and incurs accident risks. To tackle this challenges, grid operators are gradually using Unmanned Aerial Vehicles (UAVs). UAV trajectories are observed by a centralized operation center engineers for identifying electrical assets. Moreover, asset identification can be further automated through the use of Artificial Intelligence (AI) models. However, centralized training of AI models with UAV images may cause inspection delays when the network is overloaded and requires Cloud environments with enough processing power for model training on the operation center. This imposes privacy concerns as sensitive data is stored and processed externally from the infrastructure facility. This article proposes a federated learning method for UAV-based inspection that leverages a Multi-access Edge Computing platform installed in edge nodes to train UAV data and improve the overall inspection autonomy. The method is applied for the inspection of the Public Power Corporation’s Innovation Hub. Experiments are performed with the proposed method as well as with a centralized AI inspection method and demonstrate the federated learning benefits in reliability, AI model processing time and privacy conservation." @default.
- W4313404304 created "2023-01-06" @default.
- W4313404304 creator A5076338496 @default.
- W4313404304 date "2022-12-19" @default.
- W4313404304 modified "2023-09-25" @default.
- W4313404304 title "Federated learning for 5G-enabled infrastructure inspection with UAVs" @default.
- W4313404304 cites W2064675550 @default.
- W4313404304 cites W2234017516 @default.
- W4313404304 cites W2568772110 @default.
- W4313404304 cites W2783876128 @default.
- W4313404304 cites W2808683316 @default.
- W4313404304 cites W2944851425 @default.
- W4313404304 cites W3098615153 @default.
- W4313404304 cites W3103802018 @default.
- W4313404304 cites W3135231128 @default.
- W4313404304 cites W3144293453 @default.
- W4313404304 cites W4292745594 @default.
- W4313404304 cites W4294106961 @default.
- W4313404304 doi "https://doi.org/10.1186/s42162-022-00254-z" @default.
- W4313404304 hasPublicationYear "2022" @default.
- W4313404304 type Work @default.
- W4313404304 citedByCount "0" @default.
- W4313404304 crossrefType "journal-article" @default.
- W4313404304 hasAuthorship W4313404304A5076338496 @default.
- W4313404304 hasBestOaLocation W43134043041 @default.
- W4313404304 hasConcept C111919701 @default.
- W4313404304 hasConcept C121332964 @default.
- W4313404304 hasConcept C154945302 @default.
- W4313404304 hasConcept C162307627 @default.
- W4313404304 hasConcept C163258240 @default.
- W4313404304 hasConcept C38652104 @default.
- W4313404304 hasConcept C41008148 @default.
- W4313404304 hasConcept C43214815 @default.
- W4313404304 hasConcept C62520636 @default.
- W4313404304 hasConcept C79974875 @default.
- W4313404304 hasConceptScore W4313404304C111919701 @default.
- W4313404304 hasConceptScore W4313404304C121332964 @default.
- W4313404304 hasConceptScore W4313404304C154945302 @default.
- W4313404304 hasConceptScore W4313404304C162307627 @default.
- W4313404304 hasConceptScore W4313404304C163258240 @default.
- W4313404304 hasConceptScore W4313404304C38652104 @default.
- W4313404304 hasConceptScore W4313404304C41008148 @default.
- W4313404304 hasConceptScore W4313404304C43214815 @default.
- W4313404304 hasConceptScore W4313404304C62520636 @default.
- W4313404304 hasConceptScore W4313404304C79974875 @default.
- W4313404304 hasFunder F4320332999 @default.
- W4313404304 hasIssue "1" @default.
- W4313404304 hasLocation W43134043041 @default.
- W4313404304 hasLocation W43134043042 @default.
- W4313404304 hasLocation W43134043043 @default.
- W4313404304 hasOpenAccess W4313404304 @default.
- W4313404304 hasPrimaryLocation W43134043041 @default.
- W4313404304 hasRelatedWork W1967490545 @default.
- W4313404304 hasRelatedWork W2115798421 @default.
- W4313404304 hasRelatedWork W2383532021 @default.
- W4313404304 hasRelatedWork W2571381109 @default.
- W4313404304 hasRelatedWork W2805919076 @default.
- W4313404304 hasRelatedWork W3115363434 @default.
- W4313404304 hasRelatedWork W4233956083 @default.
- W4313404304 hasRelatedWork W4307482744 @default.
- W4313404304 hasRelatedWork W4313017920 @default.
- W4313404304 hasRelatedWork W4385451301 @default.
- W4313404304 hasVolume "5" @default.
- W4313404304 isParatext "false" @default.
- W4313404304 isRetracted "false" @default.
- W4313404304 workType "article" @default.