Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313404417> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4313404417 endingPage "12941" @default.
- W4313404417 startingPage "12941" @default.
- W4313404417 abstract "Technological achievement and cybercriminal methodology are two parallel growing paths; protocols such as Tor and i2p (designed to offer confidentiality and anonymity) are being utilised to run ransomware companies operating under a Ransomware as a Service (RaaS) model. RaaS enables criminals with a limited technical ability to launch ransomware attacks. Several recent high-profile cases, such as the Colonial Pipeline attack and JBS Foods, involved forcing companies to pay enormous amounts of ransom money, indicating the difficulty for organisations of recovering from these attacks using traditional means, such as restoring backup systems. Hence, this is the benefit of intelligent early ransomware detection and eradication. This study offers a critical review of the literature on how we can use state-of-the-art machine learning (ML) models to detect ransomware. However, the results uncovered a tendency of previous works to report precision while overlooking the importance of other values in the confusion matrices, such as false negatives. Therefore, we also contribute a critical evaluation of ML models using a dataset of 730 malware and 735 benign samples to evaluate their suitability to mitigate ransomware at different stages of a detection system architecture and what that means in terms of cost. For example, the results have shown that an Artificial Neural Network (ANN) model will be the most suitable as it achieves the highest precision of 98.65%, a Youden’s index of 0.94, and a net benefit of 76.27%, however, the Random Forest model (lower precision of 92.73%) offered the benefit of having the lowest false-negative rate (0.00%). The risk of a false negative in this type of system is comparable to the unpredictable but typically large cost of ransomware infection, in comparison with the more predictable cost of the resources needed to filter false positives." @default.
- W4313404417 created "2023-01-06" @default.
- W4313404417 creator A5008987660 @default.
- W4313404417 creator A5015951925 @default.
- W4313404417 creator A5054622986 @default.
- W4313404417 date "2022-12-16" @default.
- W4313404417 modified "2023-10-14" @default.
- W4313404417 title "Reducing False Negatives in Ransomware Detection: A Critical Evaluation of Machine Learning Algorithms" @default.
- W4313404417 cites W2013640190 @default.
- W4313404417 cites W2053632570 @default.
- W4313404417 cites W2107074288 @default.
- W4313404417 cites W2134633067 @default.
- W4313404417 cites W2143159748 @default.
- W4313404417 cites W2148143831 @default.
- W4313404417 cites W2184720590 @default.
- W4313404417 cites W2489330990 @default.
- W4313404417 cites W2498119267 @default.
- W4313404417 cites W2596043126 @default.
- W4313404417 cites W2616426359 @default.
- W4313404417 cites W2764082857 @default.
- W4313404417 cites W2773511604 @default.
- W4313404417 cites W2793829161 @default.
- W4313404417 cites W2898652502 @default.
- W4313404417 cites W2901660216 @default.
- W4313404417 cites W2902391397 @default.
- W4313404417 cites W2911964244 @default.
- W4313404417 cites W2954539634 @default.
- W4313404417 cites W2955105517 @default.
- W4313404417 cites W2998074434 @default.
- W4313404417 cites W3006992647 @default.
- W4313404417 cites W3009492331 @default.
- W4313404417 cites W3039822732 @default.
- W4313404417 cites W3138849778 @default.
- W4313404417 cites W4206932509 @default.
- W4313404417 cites W4220886040 @default.
- W4313404417 cites W4224306926 @default.
- W4313404417 cites W4244843651 @default.
- W4313404417 cites W4292056024 @default.
- W4313404417 cites W4307562124 @default.
- W4313404417 doi "https://doi.org/10.3390/app122412941" @default.
- W4313404417 hasPublicationYear "2022" @default.
- W4313404417 type Work @default.
- W4313404417 citedByCount "1" @default.
- W4313404417 countsByYear W43134044172023 @default.
- W4313404417 crossrefType "journal-article" @default.
- W4313404417 hasAuthorship W4313404417A5008987660 @default.
- W4313404417 hasAuthorship W4313404417A5015951925 @default.
- W4313404417 hasAuthorship W4313404417A5054622986 @default.
- W4313404417 hasBestOaLocation W43134044171 @default.
- W4313404417 hasConcept C111919701 @default.
- W4313404417 hasConcept C11413529 @default.
- W4313404417 hasConcept C119857082 @default.
- W4313404417 hasConcept C124101348 @default.
- W4313404417 hasConcept C154945302 @default.
- W4313404417 hasConcept C2777667771 @default.
- W4313404417 hasConcept C2780945871 @default.
- W4313404417 hasConcept C38652104 @default.
- W4313404417 hasConcept C41008148 @default.
- W4313404417 hasConcept C541664917 @default.
- W4313404417 hasConceptScore W4313404417C111919701 @default.
- W4313404417 hasConceptScore W4313404417C11413529 @default.
- W4313404417 hasConceptScore W4313404417C119857082 @default.
- W4313404417 hasConceptScore W4313404417C124101348 @default.
- W4313404417 hasConceptScore W4313404417C154945302 @default.
- W4313404417 hasConceptScore W4313404417C2777667771 @default.
- W4313404417 hasConceptScore W4313404417C2780945871 @default.
- W4313404417 hasConceptScore W4313404417C38652104 @default.
- W4313404417 hasConceptScore W4313404417C41008148 @default.
- W4313404417 hasConceptScore W4313404417C541664917 @default.
- W4313404417 hasIssue "24" @default.
- W4313404417 hasLocation W43134044171 @default.
- W4313404417 hasLocation W43134044172 @default.
- W4313404417 hasLocation W43134044173 @default.
- W4313404417 hasLocation W43134044174 @default.
- W4313404417 hasOpenAccess W4313404417 @default.
- W4313404417 hasPrimaryLocation W43134044171 @default.
- W4313404417 hasRelatedWork W2783466036 @default.
- W4313404417 hasRelatedWork W3160425865 @default.
- W4313404417 hasRelatedWork W3211746486 @default.
- W4313404417 hasRelatedWork W4206166326 @default.
- W4313404417 hasRelatedWork W4206698438 @default.
- W4313404417 hasRelatedWork W4210579926 @default.
- W4313404417 hasRelatedWork W4292158646 @default.
- W4313404417 hasRelatedWork W4297496397 @default.
- W4313404417 hasRelatedWork W4319151772 @default.
- W4313404417 hasRelatedWork W4385575191 @default.
- W4313404417 hasVolume "12" @default.
- W4313404417 isParatext "false" @default.
- W4313404417 isRetracted "false" @default.
- W4313404417 workType "article" @default.