Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313404504> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4313404504 endingPage "12942" @default.
- W4313404504 startingPage "12942" @default.
- W4313404504 abstract "Thanks to the development of geographic information technology, geospatial representation learning based on POIs (Point-of-Interest) has gained widespread attention in the past few years. POI is an important indicator to reflect urban socioeconomic activities, widely used to extract geospatial information. However, previous studies often focus on a specific area, such as a city or a district, and are designed only for particular tasks, such as land-use classification. On the other hand, large-scale pre-trained models (PTMs) have recently achieved impressive success and become a milestone in artificial intelligence (AI). Against this background, this study proposes the first large-scale pre-training geospatial representation learning model called GeoBERT. First, we collect about 17 million POIs in 30 cities across China to construct pre-training corpora, with 313 POI types as the tokens and the level-7 Geohash grids as the basic units. Second, we pre-train GeoEBRT to learn grid embedding in self-supervised learning by masking the POI type and then predicting. Third, under the paradigm of “pre-training + fine-tuning”, we design five practical downstream tasks. Experiments show that, with just one additional output layer fine-tuning, GeoBERT outperforms previous NLP methods (Word2vec, GloVe) used in geospatial representation learning by 9.21% on average in F1-score for classification tasks, such as store site recommendation and working/living area prediction. For regression tasks, such as POI number prediction, house price prediction, and passenger flow prediction, GeoBERT demonstrates greater performance improvements. The experiment results prove that pre-training on large-scale POI data can significantly improve the ability to extract geospatial information. In the discussion section, we provide a detailed analysis of what GeoBERT has learned from the perspective of attention mechanisms." @default.
- W4313404504 created "2023-01-06" @default.
- W4313404504 creator A5001877137 @default.
- W4313404504 creator A5021629323 @default.
- W4313404504 creator A5052522029 @default.
- W4313404504 creator A5088088349 @default.
- W4313404504 date "2022-12-16" @default.
- W4313404504 modified "2023-10-10" @default.
- W4313404504 title "GeoBERT: Pre-Training Geospatial Representation Learning on Point-of-Interest" @default.
- W4313404504 cites W1566289585 @default.
- W4313404504 cites W2153207204 @default.
- W4313404504 cites W2534538876 @default.
- W4313404504 cites W2604411573 @default.
- W4313404504 cites W2708165930 @default.
- W4313404504 cites W2776890924 @default.
- W4313404504 cites W2807954821 @default.
- W4313404504 cites W2885655815 @default.
- W4313404504 cites W2890046169 @default.
- W4313404504 cites W2895806569 @default.
- W4313404504 cites W2911489562 @default.
- W4313404504 cites W2920977636 @default.
- W4313404504 cites W2950883684 @default.
- W4313404504 cites W2963716420 @default.
- W4313404504 cites W2964579991 @default.
- W4313404504 cites W2970771982 @default.
- W4313404504 cites W3006361663 @default.
- W4313404504 cites W3046375318 @default.
- W4313404504 cites W3080135936 @default.
- W4313404504 cites W3163513764 @default.
- W4313404504 cites W3163690249 @default.
- W4313404504 cites W3170558324 @default.
- W4313404504 cites W3198659451 @default.
- W4313404504 cites W3214340375 @default.
- W4313404504 cites W4206603952 @default.
- W4313404504 cites W4213077304 @default.
- W4313404504 cites W4221005846 @default.
- W4313404504 cites W4226244192 @default.
- W4313404504 cites W4285098819 @default.
- W4313404504 cites W4313156423 @default.
- W4313404504 doi "https://doi.org/10.3390/app122412942" @default.
- W4313404504 hasPublicationYear "2022" @default.
- W4313404504 type Work @default.
- W4313404504 citedByCount "2" @default.
- W4313404504 countsByYear W43134045042023 @default.
- W4313404504 crossrefType "journal-article" @default.
- W4313404504 hasAuthorship W4313404504A5001877137 @default.
- W4313404504 hasAuthorship W4313404504A5021629323 @default.
- W4313404504 hasAuthorship W4313404504A5052522029 @default.
- W4313404504 hasAuthorship W4313404504A5088088349 @default.
- W4313404504 hasBestOaLocation W43134045041 @default.
- W4313404504 hasConcept C119857082 @default.
- W4313404504 hasConcept C154945302 @default.
- W4313404504 hasConcept C17744445 @default.
- W4313404504 hasConcept C199539241 @default.
- W4313404504 hasConcept C205649164 @default.
- W4313404504 hasConcept C2522767166 @default.
- W4313404504 hasConcept C2776359362 @default.
- W4313404504 hasConcept C2778755073 @default.
- W4313404504 hasConcept C41008148 @default.
- W4313404504 hasConcept C58640448 @default.
- W4313404504 hasConcept C59404180 @default.
- W4313404504 hasConcept C94625758 @default.
- W4313404504 hasConcept C9770341 @default.
- W4313404504 hasConceptScore W4313404504C119857082 @default.
- W4313404504 hasConceptScore W4313404504C154945302 @default.
- W4313404504 hasConceptScore W4313404504C17744445 @default.
- W4313404504 hasConceptScore W4313404504C199539241 @default.
- W4313404504 hasConceptScore W4313404504C205649164 @default.
- W4313404504 hasConceptScore W4313404504C2522767166 @default.
- W4313404504 hasConceptScore W4313404504C2776359362 @default.
- W4313404504 hasConceptScore W4313404504C2778755073 @default.
- W4313404504 hasConceptScore W4313404504C41008148 @default.
- W4313404504 hasConceptScore W4313404504C58640448 @default.
- W4313404504 hasConceptScore W4313404504C59404180 @default.
- W4313404504 hasConceptScore W4313404504C94625758 @default.
- W4313404504 hasConceptScore W4313404504C9770341 @default.
- W4313404504 hasIssue "24" @default.
- W4313404504 hasLocation W43134045041 @default.
- W4313404504 hasLocation W43134045042 @default.
- W4313404504 hasOpenAccess W4313404504 @default.
- W4313404504 hasPrimaryLocation W43134045041 @default.
- W4313404504 hasRelatedWork W2358687537 @default.
- W4313404504 hasRelatedWork W2961085424 @default.
- W4313404504 hasRelatedWork W3046775127 @default.
- W4313404504 hasRelatedWork W3087493185 @default.
- W4313404504 hasRelatedWork W4206762304 @default.
- W4313404504 hasRelatedWork W4285260836 @default.
- W4313404504 hasRelatedWork W4286629047 @default.
- W4313404504 hasRelatedWork W4306321456 @default.
- W4313404504 hasRelatedWork W4306674287 @default.
- W4313404504 hasRelatedWork W4224009465 @default.
- W4313404504 hasVolume "12" @default.
- W4313404504 isParatext "false" @default.
- W4313404504 isRetracted "false" @default.
- W4313404504 workType "article" @default.