Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313405145> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4313405145 endingPage "107569" @default.
- W4313405145 startingPage "107569" @default.
- W4313405145 abstract "Semantic segmentation is a fundamental vision task for agricultural robots to understand the surrounding environments in natural orchards. The recent development of the LiDAR techniques enables the robot to acquire accurate range measurements of the view, which have rich geometrical information compared to the RGB images. By combining the point cloud and color, rich features on geometries and textures can be obtained. In this work, we propose a deep-learning-based segmentation method to perform accurate semantic segmentation on fused data from a LiDAR-Camera visual sensor. Two critical problems are explored and solved in this work. The first one is how to efficiently fused the texture and geometrical features from multi-sensor data. The second one is how to efficiently train the 3D segmentation network under severely imbalanced class conditions. Moreover, an implementation of 3D segmentation in orchards including LiDAR-Camera data fusion, data collection and labeling, network training, and model inference is introduced in detail. In the experiment, we comprehensively analyze the network setup when dealing with highly unstructured and noisy point clouds acquired from an apple orchard. Overall, our proposed method achieves 86.2% mIoU on the segmentation of fruits on the high-resolution point cloud (100k–200k points). The experiment results show that the proposed method can perform accurate segmentation in real orchard environments." @default.
- W4313405145 created "2023-01-06" @default.
- W4313405145 creator A5038896099 @default.
- W4313405145 creator A5090259308 @default.
- W4313405145 date "2023-01-01" @default.
- W4313405145 modified "2023-10-09" @default.
- W4313405145 title "Semantic segmentation of fruits on multi-sensor fused data in natural orchards" @default.
- W4313405145 cites W2778854158 @default.
- W4313405145 cites W2809254203 @default.
- W4313405145 cites W3008115128 @default.
- W4313405145 cites W3035665735 @default.
- W4313405145 cites W3148630054 @default.
- W4313405145 cites W3174896666 @default.
- W4313405145 cites W3175517966 @default.
- W4313405145 cites W3183685035 @default.
- W4313405145 cites W3200060357 @default.
- W4313405145 cites W3200923142 @default.
- W4313405145 cites W3205898796 @default.
- W4313405145 cites W3208411184 @default.
- W4313405145 cites W4205569741 @default.
- W4313405145 cites W4205860895 @default.
- W4313405145 cites W4210264399 @default.
- W4313405145 cites W4308156238 @default.
- W4313405145 doi "https://doi.org/10.1016/j.compag.2022.107569" @default.
- W4313405145 hasPublicationYear "2023" @default.
- W4313405145 type Work @default.
- W4313405145 citedByCount "3" @default.
- W4313405145 countsByYear W43134051452023 @default.
- W4313405145 crossrefType "journal-article" @default.
- W4313405145 hasAuthorship W4313405145A5038896099 @default.
- W4313405145 hasAuthorship W4313405145A5090259308 @default.
- W4313405145 hasBestOaLocation W43134051452 @default.
- W4313405145 hasConcept C124504099 @default.
- W4313405145 hasConcept C131979681 @default.
- W4313405145 hasConcept C154945302 @default.
- W4313405145 hasConcept C205649164 @default.
- W4313405145 hasConcept C31972630 @default.
- W4313405145 hasConcept C33954974 @default.
- W4313405145 hasConcept C41008148 @default.
- W4313405145 hasConcept C51399673 @default.
- W4313405145 hasConcept C62649853 @default.
- W4313405145 hasConcept C65885262 @default.
- W4313405145 hasConcept C82990744 @default.
- W4313405145 hasConcept C89600930 @default.
- W4313405145 hasConceptScore W4313405145C124504099 @default.
- W4313405145 hasConceptScore W4313405145C131979681 @default.
- W4313405145 hasConceptScore W4313405145C154945302 @default.
- W4313405145 hasConceptScore W4313405145C205649164 @default.
- W4313405145 hasConceptScore W4313405145C31972630 @default.
- W4313405145 hasConceptScore W4313405145C33954974 @default.
- W4313405145 hasConceptScore W4313405145C41008148 @default.
- W4313405145 hasConceptScore W4313405145C51399673 @default.
- W4313405145 hasConceptScore W4313405145C62649853 @default.
- W4313405145 hasConceptScore W4313405145C65885262 @default.
- W4313405145 hasConceptScore W4313405145C82990744 @default.
- W4313405145 hasConceptScore W4313405145C89600930 @default.
- W4313405145 hasLocation W43134051451 @default.
- W4313405145 hasLocation W43134051452 @default.
- W4313405145 hasOpenAccess W4313405145 @default.
- W4313405145 hasPrimaryLocation W43134051451 @default.
- W4313405145 hasRelatedWork W1507266234 @default.
- W4313405145 hasRelatedWork W1669643531 @default.
- W4313405145 hasRelatedWork W2069711651 @default.
- W4313405145 hasRelatedWork W2117664411 @default.
- W4313405145 hasRelatedWork W2117933325 @default.
- W4313405145 hasRelatedWork W2549936415 @default.
- W4313405145 hasRelatedWork W2558375057 @default.
- W4313405145 hasRelatedWork W2739874619 @default.
- W4313405145 hasRelatedWork W2785932105 @default.
- W4313405145 hasRelatedWork W3147816421 @default.
- W4313405145 hasVolume "204" @default.
- W4313405145 isParatext "false" @default.
- W4313405145 isRetracted "false" @default.
- W4313405145 workType "article" @default.