Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313405320> ?p ?o ?g. }
- W4313405320 endingPage "095440622211415" @default.
- W4313405320 startingPage "095440622211415" @default.
- W4313405320 abstract "Condition monitoring of rotor dynamic systems is emerging research in recent years. The proposed research is a condition monitoring methodology based on Adaptive Neuro-Fuzzy Inference Systems (ANFIS) to detect the open cracks in the single disk rotor-bearing system. Condition monitoring systems generally requires a large amount of processed data for a specific output. The proposed methodology uses the same input data to train two different ANFIS without compromising on the accuracy of the results. The response of rotor-bearing system is generated by using finite element model analysis and harmonic balance method. All simulations are programed in MATLAB programing software. The effects of open groove or wedge cracks (notch crack) on natural frequency and resultant operational response (nodal deflections) of rotor-bearing systems are analyzed. Response orbit at 3× resonance of first natural frequency is analyzed to diagnose the crack in rotor shaft. Resultant operational response (Absolute response due to crack) is recorded for various crack locations and crack depths. Continuous Wavelet Transforms (CWT) are used, to extract the features from operational deflection shape (from operational response) to detect the crack location and their severity (depth). Location of maximum CWT coefficients provides the close vicinity of crack and their magnitude provides the severity of crack. Crack as small as 1% of crack depth to diameter ratio can be identified by CWT. ANFIS are used as a machine condition monitoring methodology to diagnose the crack and predict the crack parameters (crack location and depth). Two Parallel ANFIS are trained to predict the crack parameters. ANFIS-1 is trained for crack location and ANFIS-2 is trained for crack depth. CWT coefficients, maximum response amplitude at the vicinity of crack, and first three natural frequencies are provided as input to both ANFIS-1 and ANFIS-2 for training. The trained condition monitoring methodology accurately detects (predict) the crack location (ANFIS-1) and crack depth (ANFIS-2) with root mean squared error of 0.0833 and 0.137916 respectively." @default.
- W4313405320 created "2023-01-06" @default.
- W4313405320 creator A5055278921 @default.
- W4313405320 creator A5069814267 @default.
- W4313405320 date "2022-12-19" @default.
- W4313405320 modified "2023-10-16" @default.
- W4313405320 title "Fault diagnosis in rotors using adaptive neuro-fuzzy inference systems" @default.
- W4313405320 cites W1970425607 @default.
- W4313405320 cites W1976259012 @default.
- W4313405320 cites W1992200334 @default.
- W4313405320 cites W1992418819 @default.
- W4313405320 cites W1997069653 @default.
- W4313405320 cites W2012645177 @default.
- W4313405320 cites W2019207321 @default.
- W4313405320 cites W2027297487 @default.
- W4313405320 cites W2028017637 @default.
- W4313405320 cites W2050417067 @default.
- W4313405320 cites W2057233875 @default.
- W4313405320 cites W2065866372 @default.
- W4313405320 cites W2073219611 @default.
- W4313405320 cites W2078227483 @default.
- W4313405320 cites W2083691205 @default.
- W4313405320 cites W2103216105 @default.
- W4313405320 cites W2110175956 @default.
- W4313405320 cites W2138858404 @default.
- W4313405320 cites W2144933143 @default.
- W4313405320 cites W2173008373 @default.
- W4313405320 cites W2264080584 @default.
- W4313405320 cites W2334575653 @default.
- W4313405320 cites W2403514990 @default.
- W4313405320 cites W2551057062 @default.
- W4313405320 cites W2782259231 @default.
- W4313405320 cites W2783383739 @default.
- W4313405320 cites W2791922848 @default.
- W4313405320 cites W280292566 @default.
- W4313405320 cites W2803837987 @default.
- W4313405320 cites W3170313526 @default.
- W4313405320 cites W3215724944 @default.
- W4313405320 cites W4234464351 @default.
- W4313405320 cites W4240413302 @default.
- W4313405320 cites W2002834558 @default.
- W4313405320 doi "https://doi.org/10.1177/09544062221141588" @default.
- W4313405320 hasPublicationYear "2022" @default.
- W4313405320 type Work @default.
- W4313405320 citedByCount "0" @default.
- W4313405320 crossrefType "journal-article" @default.
- W4313405320 hasAuthorship W4313405320A5055278921 @default.
- W4313405320 hasAuthorship W4313405320A5069814267 @default.
- W4313405320 hasConcept C119599485 @default.
- W4313405320 hasConcept C120665830 @default.
- W4313405320 hasConcept C121332964 @default.
- W4313405320 hasConcept C127413603 @default.
- W4313405320 hasConcept C154945302 @default.
- W4313405320 hasConcept C17281054 @default.
- W4313405320 hasConcept C177124886 @default.
- W4313405320 hasConcept C186108316 @default.
- W4313405320 hasConcept C195975749 @default.
- W4313405320 hasConcept C198394728 @default.
- W4313405320 hasConcept C199978012 @default.
- W4313405320 hasConcept C24890656 @default.
- W4313405320 hasConcept C2775846686 @default.
- W4313405320 hasConcept C2775924081 @default.
- W4313405320 hasConcept C2781355719 @default.
- W4313405320 hasConcept C41008148 @default.
- W4313405320 hasConcept C47432892 @default.
- W4313405320 hasConcept C47446073 @default.
- W4313405320 hasConcept C58166 @default.
- W4313405320 hasConcept C66938386 @default.
- W4313405320 hasConcept C78519656 @default.
- W4313405320 hasConcept C78736273 @default.
- W4313405320 hasConceptScore W4313405320C119599485 @default.
- W4313405320 hasConceptScore W4313405320C120665830 @default.
- W4313405320 hasConceptScore W4313405320C121332964 @default.
- W4313405320 hasConceptScore W4313405320C127413603 @default.
- W4313405320 hasConceptScore W4313405320C154945302 @default.
- W4313405320 hasConceptScore W4313405320C17281054 @default.
- W4313405320 hasConceptScore W4313405320C177124886 @default.
- W4313405320 hasConceptScore W4313405320C186108316 @default.
- W4313405320 hasConceptScore W4313405320C195975749 @default.
- W4313405320 hasConceptScore W4313405320C198394728 @default.
- W4313405320 hasConceptScore W4313405320C199978012 @default.
- W4313405320 hasConceptScore W4313405320C24890656 @default.
- W4313405320 hasConceptScore W4313405320C2775846686 @default.
- W4313405320 hasConceptScore W4313405320C2775924081 @default.
- W4313405320 hasConceptScore W4313405320C2781355719 @default.
- W4313405320 hasConceptScore W4313405320C41008148 @default.
- W4313405320 hasConceptScore W4313405320C47432892 @default.
- W4313405320 hasConceptScore W4313405320C47446073 @default.
- W4313405320 hasConceptScore W4313405320C58166 @default.
- W4313405320 hasConceptScore W4313405320C66938386 @default.
- W4313405320 hasConceptScore W4313405320C78519656 @default.
- W4313405320 hasConceptScore W4313405320C78736273 @default.
- W4313405320 hasLocation W43134053201 @default.
- W4313405320 hasOpenAccess W4313405320 @default.
- W4313405320 hasPrimaryLocation W43134053201 @default.
- W4313405320 hasRelatedWork W1898841248 @default.
- W4313405320 hasRelatedWork W1979896680 @default.
- W4313405320 hasRelatedWork W2033719250 @default.