Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313406319> ?p ?o ?g. }
- W4313406319 endingPage "3209" @default.
- W4313406319 startingPage "3209" @default.
- W4313406319 abstract "Pod phenotypic traits are closely related to grain yield and quality. Pod phenotype detection in soybean populations in natural environments is important to soybean breeding, cultivation, and field management. For an accurate pod phenotype description, a dynamic detection method is proposed based on an improved YOLO-v5 network. First, two varieties were taken as research objects. A self-developed field soybean three-dimensional color image acquisition vehicle was used to obtain RGB and depth images of soybean pods in the field. Second, the red–green–blue (RGB) and depth images were registered using an edge feature point alignment metric to accurately distinguish complex environmental backgrounds and establish a red–green–blue-depth (RGB-D) dataset for model training. Third, an improved feature pyramid network and path aggregation network (FPN+PAN) structure and a channel attention atrous spatial pyramid pooling (CA-ASPP) module were introduced to improve the dim and small pod target detection. Finally, a soybean pod quantity compensation model was established by analyzing the influence of the number of individual plants in the soybean population on the detection precision to statistically correct the predicted pod quantity. In the experimental phase, we analyzed the impact of different datasets on the model and the performance of different models on the same dataset under the same test conditions. The test results showed that compared with network models trained on the RGB dataset, the recall and precision of models trained on the RGB-D dataset increased by approximately 32% and 25%, respectively. Compared with YOLO-v5s, the precision of the improved YOLO-v5 increased by approximately 6%, reaching 88.14% precision for pod quantity detection with 200 plants in the soybean population. After model compensation, the mean relative errors between the predicted and actual pod quantities were 2% to 3% for the two soybean varieties. Thus, the proposed method can provide rapid and massive detection for pod phenotyping in soybean populations and a theoretical basis and technical knowledge for soybean breeding, scientific cultivation, and field management." @default.
- W4313406319 created "2023-01-06" @default.
- W4313406319 creator A5002260720 @default.
- W4313406319 creator A5018652581 @default.
- W4313406319 creator A5032028947 @default.
- W4313406319 creator A5042642127 @default.
- W4313406319 creator A5076699095 @default.
- W4313406319 creator A5088141052 @default.
- W4313406319 creator A5088254436 @default.
- W4313406319 date "2022-12-17" @default.
- W4313406319 modified "2023-10-01" @default.
- W4313406319 title "A Dynamic Detection Method for Phenotyping Pods in a Soybean Population Based on an Improved YOLO-v5 Network" @default.
- W4313406319 cites W2027563724 @default.
- W4313406319 cites W2102605133 @default.
- W4313406319 cites W2579993107 @default.
- W4313406319 cites W2726355056 @default.
- W4313406319 cites W2884585870 @default.
- W4313406319 cites W2885118127 @default.
- W4313406319 cites W2941294328 @default.
- W4313406319 cites W2963150697 @default.
- W4313406319 cites W3121612978 @default.
- W4313406319 cites W3122173535 @default.
- W4313406319 cites W3131488775 @default.
- W4313406319 cites W3178979426 @default.
- W4313406319 cites W3182491095 @default.
- W4313406319 cites W3186066215 @default.
- W4313406319 cites W3191152562 @default.
- W4313406319 cites W3199427309 @default.
- W4313406319 cites W4200042936 @default.
- W4313406319 cites W4200261781 @default.
- W4313406319 cites W4206638421 @default.
- W4313406319 cites W4225980190 @default.
- W4313406319 cites W4226483830 @default.
- W4313406319 cites W4280612229 @default.
- W4313406319 cites W4281558878 @default.
- W4313406319 cites W4283734442 @default.
- W4313406319 cites W4285149153 @default.
- W4313406319 cites W4290774434 @default.
- W4313406319 cites W4292428556 @default.
- W4313406319 cites W4303579273 @default.
- W4313406319 cites W4307434366 @default.
- W4313406319 cites W4309003554 @default.
- W4313406319 doi "https://doi.org/10.3390/agronomy12123209" @default.
- W4313406319 hasPublicationYear "2022" @default.
- W4313406319 type Work @default.
- W4313406319 citedByCount "3" @default.
- W4313406319 countsByYear W43134063192023 @default.
- W4313406319 crossrefType "journal-article" @default.
- W4313406319 hasAuthorship W4313406319A5002260720 @default.
- W4313406319 hasAuthorship W4313406319A5018652581 @default.
- W4313406319 hasAuthorship W4313406319A5032028947 @default.
- W4313406319 hasAuthorship W4313406319A5042642127 @default.
- W4313406319 hasAuthorship W4313406319A5076699095 @default.
- W4313406319 hasAuthorship W4313406319A5088141052 @default.
- W4313406319 hasAuthorship W4313406319A5088254436 @default.
- W4313406319 hasBestOaLocation W43134063191 @default.
- W4313406319 hasConcept C137776501 @default.
- W4313406319 hasConcept C138885662 @default.
- W4313406319 hasConcept C142575187 @default.
- W4313406319 hasConcept C144024400 @default.
- W4313406319 hasConcept C144027150 @default.
- W4313406319 hasConcept C149923435 @default.
- W4313406319 hasConcept C153180895 @default.
- W4313406319 hasConcept C154945302 @default.
- W4313406319 hasConcept C2524010 @default.
- W4313406319 hasConcept C2776401178 @default.
- W4313406319 hasConcept C2908647359 @default.
- W4313406319 hasConcept C31972630 @default.
- W4313406319 hasConcept C33923547 @default.
- W4313406319 hasConcept C41008148 @default.
- W4313406319 hasConcept C41895202 @default.
- W4313406319 hasConcept C82990744 @default.
- W4313406319 hasConcept C86803240 @default.
- W4313406319 hasConceptScore W4313406319C137776501 @default.
- W4313406319 hasConceptScore W4313406319C138885662 @default.
- W4313406319 hasConceptScore W4313406319C142575187 @default.
- W4313406319 hasConceptScore W4313406319C144024400 @default.
- W4313406319 hasConceptScore W4313406319C144027150 @default.
- W4313406319 hasConceptScore W4313406319C149923435 @default.
- W4313406319 hasConceptScore W4313406319C153180895 @default.
- W4313406319 hasConceptScore W4313406319C154945302 @default.
- W4313406319 hasConceptScore W4313406319C2524010 @default.
- W4313406319 hasConceptScore W4313406319C2776401178 @default.
- W4313406319 hasConceptScore W4313406319C2908647359 @default.
- W4313406319 hasConceptScore W4313406319C31972630 @default.
- W4313406319 hasConceptScore W4313406319C33923547 @default.
- W4313406319 hasConceptScore W4313406319C41008148 @default.
- W4313406319 hasConceptScore W4313406319C41895202 @default.
- W4313406319 hasConceptScore W4313406319C82990744 @default.
- W4313406319 hasConceptScore W4313406319C86803240 @default.
- W4313406319 hasIssue "12" @default.
- W4313406319 hasLocation W43134063191 @default.
- W4313406319 hasLocation W43134063192 @default.
- W4313406319 hasOpenAccess W4313406319 @default.
- W4313406319 hasPrimaryLocation W43134063191 @default.
- W4313406319 hasRelatedWork W2052518016 @default.
- W4313406319 hasRelatedWork W2081022503 @default.
- W4313406319 hasRelatedWork W2085956791 @default.