Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313406541> ?p ?o ?g. }
- W4313406541 endingPage "415" @default.
- W4313406541 startingPage "395" @default.
- W4313406541 abstract "At present, the excellent performance of support vector machine (SVM) has made it successfully applied in many fields. However, when SVM is used for two-dimensional matrix data classification, vectorization of these data easily leads to dimension curse and the loss of structural information. Moreover, SVM is sensitive to outliers, which causes the hyperplane to move towards outliers. Therefore, this paper proposes a novel classification method for data in matrix-form, named non-parallel bounded support matrix machine (NPBSMM). In NPBSMM, a constraint norm group (CNG) is constructed and applied to objective function, which can not only suppress the negative impact of outliers on the model, but also make NPBSMM has better sparsity. By constructing CNG, the operation of matrix inversion in dual problem of traditional classification methods is avoided, so NPBSMM is more suitable for solving large-scale data problems. Further, to extract structure information of matrix for modeling, multi-rank left and right projection matrices are employed to establish objective function, which makes NPBSMM has a better ability of data fitting. Experiments performed on three roller bearing fault datasets show that the proposed NPBSMM method has powerful performance and robustness as compared with other typical classification methods." @default.
- W4313406541 created "2023-01-06" @default.
- W4313406541 creator A5016701351 @default.
- W4313406541 creator A5064754125 @default.
- W4313406541 creator A5065674932 @default.
- W4313406541 creator A5079131792 @default.
- W4313406541 date "2023-05-01" @default.
- W4313406541 modified "2023-10-17" @default.
- W4313406541 title "Non-parallel bounded support matrix machine and its application in roller bearing fault diagnosis" @default.
- W4313406541 cites W1980800761 @default.
- W4313406541 cites W2036043678 @default.
- W4313406541 cites W2080169089 @default.
- W4313406541 cites W2081130435 @default.
- W4313406541 cites W2117437159 @default.
- W4313406541 cites W2153635508 @default.
- W4313406541 cites W2232821992 @default.
- W4313406541 cites W2743943492 @default.
- W4313406541 cites W2757101026 @default.
- W4313406541 cites W2757181078 @default.
- W4313406541 cites W2760834907 @default.
- W4313406541 cites W2791280689 @default.
- W4313406541 cites W2795562373 @default.
- W4313406541 cites W2801821460 @default.
- W4313406541 cites W2810188680 @default.
- W4313406541 cites W2845043204 @default.
- W4313406541 cites W2867252385 @default.
- W4313406541 cites W2889352175 @default.
- W4313406541 cites W2890039862 @default.
- W4313406541 cites W2897084336 @default.
- W4313406541 cites W2910310249 @default.
- W4313406541 cites W2915184413 @default.
- W4313406541 cites W2925322067 @default.
- W4313406541 cites W2940511651 @default.
- W4313406541 cites W2946805823 @default.
- W4313406541 cites W2959437307 @default.
- W4313406541 cites W2963607435 @default.
- W4313406541 cites W2969747056 @default.
- W4313406541 cites W2985850350 @default.
- W4313406541 cites W2987581600 @default.
- W4313406541 cites W3019703409 @default.
- W4313406541 cites W3047352696 @default.
- W4313406541 cites W3081627837 @default.
- W4313406541 cites W3087199467 @default.
- W4313406541 cites W3094224694 @default.
- W4313406541 cites W3117055840 @default.
- W4313406541 cites W3127303281 @default.
- W4313406541 cites W3174788865 @default.
- W4313406541 cites W3186409582 @default.
- W4313406541 cites W3195324944 @default.
- W4313406541 cites W3212045841 @default.
- W4313406541 cites W3216399017 @default.
- W4313406541 cites W4224044508 @default.
- W4313406541 cites W4225543909 @default.
- W4313406541 cites W4284959507 @default.
- W4313406541 cites W4285013588 @default.
- W4313406541 doi "https://doi.org/10.1016/j.ins.2022.12.090" @default.
- W4313406541 hasPublicationYear "2023" @default.
- W4313406541 type Work @default.
- W4313406541 citedByCount "16" @default.
- W4313406541 countsByYear W43134065412023 @default.
- W4313406541 crossrefType "journal-article" @default.
- W4313406541 hasAuthorship W4313406541A5016701351 @default.
- W4313406541 hasAuthorship W4313406541A5064754125 @default.
- W4313406541 hasAuthorship W4313406541A5065674932 @default.
- W4313406541 hasAuthorship W4313406541A5079131792 @default.
- W4313406541 hasConcept C104317684 @default.
- W4313406541 hasConcept C106487976 @default.
- W4313406541 hasConcept C11413529 @default.
- W4313406541 hasConcept C12267149 @default.
- W4313406541 hasConcept C124101348 @default.
- W4313406541 hasConcept C134306372 @default.
- W4313406541 hasConcept C153180895 @default.
- W4313406541 hasConcept C154945302 @default.
- W4313406541 hasConcept C159985019 @default.
- W4313406541 hasConcept C185592680 @default.
- W4313406541 hasConcept C192562407 @default.
- W4313406541 hasConcept C2524010 @default.
- W4313406541 hasConcept C33923547 @default.
- W4313406541 hasConcept C34388435 @default.
- W4313406541 hasConcept C41008148 @default.
- W4313406541 hasConcept C55493867 @default.
- W4313406541 hasConcept C63479239 @default.
- W4313406541 hasConcept C68693459 @default.
- W4313406541 hasConcept C79337645 @default.
- W4313406541 hasConceptScore W4313406541C104317684 @default.
- W4313406541 hasConceptScore W4313406541C106487976 @default.
- W4313406541 hasConceptScore W4313406541C11413529 @default.
- W4313406541 hasConceptScore W4313406541C12267149 @default.
- W4313406541 hasConceptScore W4313406541C124101348 @default.
- W4313406541 hasConceptScore W4313406541C134306372 @default.
- W4313406541 hasConceptScore W4313406541C153180895 @default.
- W4313406541 hasConceptScore W4313406541C154945302 @default.
- W4313406541 hasConceptScore W4313406541C159985019 @default.
- W4313406541 hasConceptScore W4313406541C185592680 @default.
- W4313406541 hasConceptScore W4313406541C192562407 @default.
- W4313406541 hasConceptScore W4313406541C2524010 @default.
- W4313406541 hasConceptScore W4313406541C33923547 @default.
- W4313406541 hasConceptScore W4313406541C34388435 @default.