Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313407399> ?p ?o ?g. }
- W4313407399 endingPage "2686" @default.
- W4313407399 startingPage "2686" @default.
- W4313407399 abstract "At present, ResNet and DenseNet have achieved significant performance gains in the field of finger-vein biometric recognition, which is partially attributed to the dominant design of cross-layer skip connection. In this manner, features from multiple layers can be effectively aggregated to provide sufficient discriminant representation. Nevertheless, an over-dense connection pattern may induce channel expansion of feature maps and excessive memory consumption. To address these issues, we proposed a low memory overhead and fairly lightweight network architecture for finger-vein recognition. The core components of the proposed network are a sequence of sparsified densely connected blocks with symmetric structure. In each block, a novel connection cropping strategy is adopted to balance the channel ratio of input/output feature maps. Beyond this, to facilitate smaller model volume and faster convergence, we substitute the standard convolutional kernels with separable convolutional kernels and introduce a robust loss metric that is defined on the geodesic distance of angular space. Our proposed sparsified densely connected network with separable convolution (hereinafter dubbed ‘SC-SDCN’) has been tested on two benchmark finger-vein datasets, including the Multimedia Lab of Chonbuk National University (MMCBNU)and Finger Vein of Universiti Sains Malaysia (FV-USM), and the advantages of our SC-SDCN can be evident from the experimental results. Specifically, an equal error rate (EER) of 0.01% and an accuracy of 99.98% are obtained on the MMCBNU dataset, and an EER of 0.45% and an accuracy of 99.74% are obtained on the FV-USM dataset." @default.
- W4313407399 created "2023-01-06" @default.
- W4313407399 creator A5026664731 @default.
- W4313407399 creator A5050455072 @default.
- W4313407399 creator A5062955450 @default.
- W4313407399 date "2022-12-19" @default.
- W4313407399 modified "2023-09-26" @default.
- W4313407399 title "A Sparsified Densely Connected Network with Separable Convolution for Finger-Vein Recognition" @default.
- W4313407399 cites W1970490745 @default.
- W4313407399 cites W1991620112 @default.
- W4313407399 cites W1997175872 @default.
- W4313407399 cites W2004617923 @default.
- W4313407399 cites W2009636029 @default.
- W4313407399 cites W2023631753 @default.
- W4313407399 cites W2037340447 @default.
- W4313407399 cites W2053009119 @default.
- W4313407399 cites W2058362416 @default.
- W4313407399 cites W2068999607 @default.
- W4313407399 cites W2097117768 @default.
- W4313407399 cites W2097418325 @default.
- W4313407399 cites W2098093910 @default.
- W4313407399 cites W2102780391 @default.
- W4313407399 cites W2118323481 @default.
- W4313407399 cites W2146148372 @default.
- W4313407399 cites W2155524567 @default.
- W4313407399 cites W2194775991 @default.
- W4313407399 cites W2275037134 @default.
- W4313407399 cites W2328254514 @default.
- W4313407399 cites W2331143823 @default.
- W4313407399 cites W2490846508 @default.
- W4313407399 cites W2531409750 @default.
- W4313407399 cites W2598954556 @default.
- W4313407399 cites W2599632008 @default.
- W4313407399 cites W2624181600 @default.
- W4313407399 cites W2735870192 @default.
- W4313407399 cites W2740462425 @default.
- W4313407399 cites W2740909158 @default.
- W4313407399 cites W2780667241 @default.
- W4313407399 cites W2793410607 @default.
- W4313407399 cites W2796970379 @default.
- W4313407399 cites W2811014381 @default.
- W4313407399 cites W2884114979 @default.
- W4313407399 cites W2888322626 @default.
- W4313407399 cites W2901432315 @default.
- W4313407399 cites W2903419854 @default.
- W4313407399 cites W2915035468 @default.
- W4313407399 cites W2919938126 @default.
- W4313407399 cites W2921209596 @default.
- W4313407399 cites W2922535961 @default.
- W4313407399 cites W2945197573 @default.
- W4313407399 cites W2948212638 @default.
- W4313407399 cites W2963446712 @default.
- W4313407399 cites W2987175876 @default.
- W4313407399 cites W3002790398 @default.
- W4313407399 cites W3003656584 @default.
- W4313407399 cites W3004478798 @default.
- W4313407399 cites W3005370840 @default.
- W4313407399 cites W3007781568 @default.
- W4313407399 cites W3014462183 @default.
- W4313407399 cites W3015517302 @default.
- W4313407399 cites W3019519029 @default.
- W4313407399 cites W3026124983 @default.
- W4313407399 cites W3049342961 @default.
- W4313407399 cites W3093656966 @default.
- W4313407399 cites W3094241136 @default.
- W4313407399 cites W3119247023 @default.
- W4313407399 cites W3202228537 @default.
- W4313407399 cites W3206597961 @default.
- W4313407399 cites W3214084518 @default.
- W4313407399 cites W3215008223 @default.
- W4313407399 cites W3216417916 @default.
- W4313407399 cites W4200297977 @default.
- W4313407399 cites W4200570948 @default.
- W4313407399 cites W4200592197 @default.
- W4313407399 cites W4212821967 @default.
- W4313407399 cites W3135120642 @default.
- W4313407399 doi "https://doi.org/10.3390/sym14122686" @default.
- W4313407399 hasPublicationYear "2022" @default.
- W4313407399 type Work @default.
- W4313407399 citedByCount "2" @default.
- W4313407399 countsByYear W43134073992023 @default.
- W4313407399 crossrefType "journal-article" @default.
- W4313407399 hasAuthorship W4313407399A5026664731 @default.
- W4313407399 hasAuthorship W4313407399A5050455072 @default.
- W4313407399 hasAuthorship W4313407399A5062955450 @default.
- W4313407399 hasBestOaLocation W43134073991 @default.
- W4313407399 hasConcept C11413529 @default.
- W4313407399 hasConcept C127162648 @default.
- W4313407399 hasConcept C13280743 @default.
- W4313407399 hasConcept C138885662 @default.
- W4313407399 hasConcept C153180895 @default.
- W4313407399 hasConcept C154945302 @default.
- W4313407399 hasConcept C162324750 @default.
- W4313407399 hasConcept C176217482 @default.
- W4313407399 hasConcept C185798385 @default.
- W4313407399 hasConcept C205649164 @default.
- W4313407399 hasConcept C21547014 @default.
- W4313407399 hasConcept C2776401178 @default.