Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313407551> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4313407551 endingPage "589" @default.
- W4313407551 startingPage "589" @default.
- W4313407551 abstract "The study is dictated by the need to make reasonable decisions in the classification of observations, for example, in the problems of medical prediction and diagnostics. Today, as part of the digitalization in healthcare, decision-making by a doctor is carried out using intelligent information systems. The introduction of such systems contributes to the implementation of policies aimed at ensuring sustainable development in the health sector. The paper discusses the method of inductive learning, which can be the algorithmic basis of such systems. In order to build a compact and high-precision classifier for the studied method, it is necessary to obtain a set of informative patterns and to create a method for building a classifier with high generalizing ability from this set of patterns. Three optimization models for the building of informative patterns have been developed, which are based on different concepts. Additionally, two algorithmic procedures have been developed that are used to obtain a compact and high-precision classifier. Experimental studies were carried out on the problems of medical prediction and diagnostics, aimed at finding the best optimization model for the building of informative pattern and at proving the effectiveness of the developed algorithmic procedures." @default.
- W4313407551 created "2023-01-06" @default.
- W4313407551 creator A5019290363 @default.
- W4313407551 creator A5027494576 @default.
- W4313407551 creator A5029579746 @default.
- W4313407551 creator A5064412510 @default.
- W4313407551 creator A5070059363 @default.
- W4313407551 creator A5072386453 @default.
- W4313407551 date "2022-12-18" @default.
- W4313407551 modified "2023-10-18" @default.
- W4313407551 title "Construction of a Compact and High-Precision Classifier in the Inductive Learning Method for Prediction and Diagnostic Problems" @default.
- W4313407551 cites W1979607399 @default.
- W4313407551 cites W1991355554 @default.
- W4313407551 cites W2005901253 @default.
- W4313407551 cites W2011101028 @default.
- W4313407551 cites W2016023958 @default.
- W4313407551 cites W2022889972 @default.
- W4313407551 cites W2070758239 @default.
- W4313407551 cites W2318752590 @default.
- W4313407551 cites W2524196372 @default.
- W4313407551 cites W3015968003 @default.
- W4313407551 cites W3186865156 @default.
- W4313407551 cites W39664709 @default.
- W4313407551 doi "https://doi.org/10.3390/info13120589" @default.
- W4313407551 hasPublicationYear "2022" @default.
- W4313407551 type Work @default.
- W4313407551 citedByCount "0" @default.
- W4313407551 crossrefType "journal-article" @default.
- W4313407551 hasAuthorship W4313407551A5019290363 @default.
- W4313407551 hasAuthorship W4313407551A5027494576 @default.
- W4313407551 hasAuthorship W4313407551A5029579746 @default.
- W4313407551 hasAuthorship W4313407551A5064412510 @default.
- W4313407551 hasAuthorship W4313407551A5070059363 @default.
- W4313407551 hasAuthorship W4313407551A5072386453 @default.
- W4313407551 hasBestOaLocation W43134075511 @default.
- W4313407551 hasConcept C119857082 @default.
- W4313407551 hasConcept C124101348 @default.
- W4313407551 hasConcept C154945302 @default.
- W4313407551 hasConcept C41008148 @default.
- W4313407551 hasConcept C95623464 @default.
- W4313407551 hasConceptScore W4313407551C119857082 @default.
- W4313407551 hasConceptScore W4313407551C124101348 @default.
- W4313407551 hasConceptScore W4313407551C154945302 @default.
- W4313407551 hasConceptScore W4313407551C41008148 @default.
- W4313407551 hasConceptScore W4313407551C95623464 @default.
- W4313407551 hasFunder F4320321079 @default.
- W4313407551 hasIssue "12" @default.
- W4313407551 hasLocation W43134075511 @default.
- W4313407551 hasLocation W43134075512 @default.
- W4313407551 hasOpenAccess W4313407551 @default.
- W4313407551 hasPrimaryLocation W43134075511 @default.
- W4313407551 hasRelatedWork W2556319748 @default.
- W4313407551 hasRelatedWork W2961085424 @default.
- W4313407551 hasRelatedWork W3046775127 @default.
- W4313407551 hasRelatedWork W3170094116 @default.
- W4313407551 hasRelatedWork W4205958290 @default.
- W4313407551 hasRelatedWork W4285260836 @default.
- W4313407551 hasRelatedWork W4286629047 @default.
- W4313407551 hasRelatedWork W4306321456 @default.
- W4313407551 hasRelatedWork W4306674287 @default.
- W4313407551 hasRelatedWork W4224009465 @default.
- W4313407551 hasVolume "13" @default.
- W4313407551 isParatext "false" @default.
- W4313407551 isRetracted "false" @default.
- W4313407551 workType "article" @default.