Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313407564> ?p ?o ?g. }
- W4313407564 endingPage "2677" @default.
- W4313407564 startingPage "2677" @default.
- W4313407564 abstract "Motor imagery (MI) is a domineering paradigm in brain–computer interface (BCI) composition, personifying the imaginary limb motion into digital commandments for neural rehabilitation and automation exertions, while many researchers fathomed myriad solutions for asymmetric MI EEG signals classification, the existence of a robust, non-complex, and subject-invariant system is far-reaching. Thereupon, we put forward an MI EEG segregation pipeline in the deep-learning domain in an effort to curtail the existing limitations. Our method amalgamates multiscale principal component analysis (MSPCA), a novel empirical Fourier decomposition (EFD) signal resolution method with Hilbert transform (HT), followed by four pre-trained convolutional neural networks for automatic feature estimation and segregation. The conceived architecture is validated upon three binary class datasets: IVa, IVb from BCI Competition III, GigaDB from the GigaScience repository, and one tertiary class dataset V from BCI competition III. The average 10-fold outcomes capitulate 98.63%, 96.33%, and 89.96%, the highest classification accuracy for the aforesaid datasets accordingly using the AlexNet CNN model in a subject-dependent context, while in subject-independent cases, the highest success score was 97.69%, outperforming the contemporary studies by a fair margin. Further experiments such as the resolution scale of EFD, comparison with other signal decomposition (SD) methods, deep feature extraction, and classification with machine learning methods also accredits the supremacy of our proposed EEG signal processing pipeline. The overall findings imply that pre-trained models are reliable in identifying EEG signals due to their capacity to maintain the time-frequency structure of EEG signals, non-complex architecture, and their potential for robust classification performance." @default.
- W4313407564 created "2023-01-06" @default.
- W4313407564 creator A5026130516 @default.
- W4313407564 creator A5028298657 @default.
- W4313407564 creator A5030669040 @default.
- W4313407564 creator A5054654083 @default.
- W4313407564 creator A5081571947 @default.
- W4313407564 date "2022-12-18" @default.
- W4313407564 modified "2023-10-09" @default.
- W4313407564 title "Exploiting Asymmetric EEG Signals with EFD in Deep Learning Domain for Robust BCI" @default.
- W4313407564 cites W1589606770 @default.
- W4313407564 cites W2011484846 @default.
- W4313407564 cites W2012297890 @default.
- W4313407564 cites W2067312040 @default.
- W4313407564 cites W2109858853 @default.
- W4313407564 cites W2115126565 @default.
- W4313407564 cites W2128909182 @default.
- W4313407564 cites W2152119085 @default.
- W4313407564 cites W2163636807 @default.
- W4313407564 cites W2289208053 @default.
- W4313407564 cites W2400058182 @default.
- W4313407564 cites W2423195739 @default.
- W4313407564 cites W2521878393 @default.
- W4313407564 cites W2564011781 @default.
- W4313407564 cites W2766733807 @default.
- W4313407564 cites W2768578923 @default.
- W4313407564 cites W2802663007 @default.
- W4313407564 cites W2809091086 @default.
- W4313407564 cites W2912885887 @default.
- W4313407564 cites W2955714720 @default.
- W4313407564 cites W2971357197 @default.
- W4313407564 cites W2982640928 @default.
- W4313407564 cites W2990331389 @default.
- W4313407564 cites W2998501753 @default.
- W4313407564 cites W3006314847 @default.
- W4313407564 cites W3036118526 @default.
- W4313407564 cites W3044699854 @default.
- W4313407564 cites W3085037063 @default.
- W4313407564 cites W3106750432 @default.
- W4313407564 cites W3127935830 @default.
- W4313407564 cites W3138238253 @default.
- W4313407564 cites W3164335859 @default.
- W4313407564 cites W3168608579 @default.
- W4313407564 cites W3193449393 @default.
- W4313407564 cites W4205954058 @default.
- W4313407564 cites W4210707650 @default.
- W4313407564 cites W4212924002 @default.
- W4313407564 cites W4213201803 @default.
- W4313407564 cites W4220916418 @default.
- W4313407564 cites W4290994856 @default.
- W4313407564 cites W4300484516 @default.
- W4313407564 doi "https://doi.org/10.3390/sym14122677" @default.
- W4313407564 hasPublicationYear "2022" @default.
- W4313407564 type Work @default.
- W4313407564 citedByCount "2" @default.
- W4313407564 countsByYear W43134075642023 @default.
- W4313407564 crossrefType "journal-article" @default.
- W4313407564 hasAuthorship W4313407564A5026130516 @default.
- W4313407564 hasAuthorship W4313407564A5028298657 @default.
- W4313407564 hasAuthorship W4313407564A5030669040 @default.
- W4313407564 hasAuthorship W4313407564A5054654083 @default.
- W4313407564 hasAuthorship W4313407564A5081571947 @default.
- W4313407564 hasBestOaLocation W43134075641 @default.
- W4313407564 hasConcept C106131492 @default.
- W4313407564 hasConcept C108583219 @default.
- W4313407564 hasConcept C118552586 @default.
- W4313407564 hasConcept C119857082 @default.
- W4313407564 hasConcept C151730666 @default.
- W4313407564 hasConcept C153180895 @default.
- W4313407564 hasConcept C154945302 @default.
- W4313407564 hasConcept C15744967 @default.
- W4313407564 hasConcept C173201364 @default.
- W4313407564 hasConcept C199360897 @default.
- W4313407564 hasConcept C25570617 @default.
- W4313407564 hasConcept C2779343474 @default.
- W4313407564 hasConcept C28490314 @default.
- W4313407564 hasConcept C31972630 @default.
- W4313407564 hasConcept C41008148 @default.
- W4313407564 hasConcept C43521106 @default.
- W4313407564 hasConcept C522805319 @default.
- W4313407564 hasConcept C52622490 @default.
- W4313407564 hasConcept C54808283 @default.
- W4313407564 hasConcept C81363708 @default.
- W4313407564 hasConcept C86803240 @default.
- W4313407564 hasConceptScore W4313407564C106131492 @default.
- W4313407564 hasConceptScore W4313407564C108583219 @default.
- W4313407564 hasConceptScore W4313407564C118552586 @default.
- W4313407564 hasConceptScore W4313407564C119857082 @default.
- W4313407564 hasConceptScore W4313407564C151730666 @default.
- W4313407564 hasConceptScore W4313407564C153180895 @default.
- W4313407564 hasConceptScore W4313407564C154945302 @default.
- W4313407564 hasConceptScore W4313407564C15744967 @default.
- W4313407564 hasConceptScore W4313407564C173201364 @default.
- W4313407564 hasConceptScore W4313407564C199360897 @default.
- W4313407564 hasConceptScore W4313407564C25570617 @default.
- W4313407564 hasConceptScore W4313407564C2779343474 @default.
- W4313407564 hasConceptScore W4313407564C28490314 @default.
- W4313407564 hasConceptScore W4313407564C31972630 @default.