Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313407850> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4313407850 endingPage "100073" @default.
- W4313407850 startingPage "100073" @default.
- W4313407850 abstract "Many machine learning methods used for the treatment of sequential data often rely on the construction of vector representations of unitary entities (e.g. words in natural language processing, or k-mers in bioinformatics). Traditionally, these representations are constructed with optimization formulations arising from co-occurrence based models. In this work, we propose a new method to embed these entities based on the Distance Geometry Problem: find object positions based on a subset of their pairwise distances or inner products. Considering the empirical Pointwise Mutual Information as a surrogate for the inner product, we discuss two Distance Geometry based algorithms to obtain word vector representations. The main advantage of such algorithms is their significantly lower computational complexity in comparison with state-of-the-art word embedding methods, which allows us to obtain word vector representations much faster. Furthermore, numerical experiments indicate that our word vectors behave quite well on text classification tasks in natural language processing as well as regression tasks in bioinformatics." @default.
- W4313407850 created "2023-01-06" @default.
- W4313407850 creator A5010127727 @default.
- W4313407850 creator A5046138085 @default.
- W4313407850 creator A5047844105 @default.
- W4313407850 date "2023-01-01" @default.
- W4313407850 modified "2023-10-01" @default.
- W4313407850 title "Distance geometry for word representations and applications" @default.
- W4313407850 cites W1662133657 @default.
- W4313407850 cites W1898843043 @default.
- W4313407850 cites W1981038351 @default.
- W4313407850 cites W2004026774 @default.
- W4313407850 cites W2017850362 @default.
- W4313407850 cites W2034762747 @default.
- W4313407850 cites W2057069782 @default.
- W4313407850 cites W2069262775 @default.
- W4313407850 cites W2072863821 @default.
- W4313407850 cites W2075893026 @default.
- W4313407850 cites W2105632699 @default.
- W4313407850 cites W2110543129 @default.
- W4313407850 cites W2110862165 @default.
- W4313407850 cites W2327230547 @default.
- W4313407850 cites W2791796577 @default.
- W4313407850 cites W2903988268 @default.
- W4313407850 cites W2953018250 @default.
- W4313407850 cites W2963433607 @default.
- W4313407850 cites W2963470657 @default.
- W4313407850 cites W2973426212 @default.
- W4313407850 cites W4210702584 @default.
- W4313407850 doi "https://doi.org/10.1016/j.jcmds.2022.100073" @default.
- W4313407850 hasPublicationYear "2023" @default.
- W4313407850 type Work @default.
- W4313407850 citedByCount "0" @default.
- W4313407850 crossrefType "journal-article" @default.
- W4313407850 hasAuthorship W4313407850A5010127727 @default.
- W4313407850 hasAuthorship W4313407850A5046138085 @default.
- W4313407850 hasAuthorship W4313407850A5047844105 @default.
- W4313407850 hasBestOaLocation W43134078501 @default.
- W4313407850 hasConcept C11413529 @default.
- W4313407850 hasConcept C134306372 @default.
- W4313407850 hasConcept C152139883 @default.
- W4313407850 hasConcept C154945302 @default.
- W4313407850 hasConcept C17744445 @default.
- W4313407850 hasConcept C184898388 @default.
- W4313407850 hasConcept C199539241 @default.
- W4313407850 hasConcept C2524010 @default.
- W4313407850 hasConcept C2777462759 @default.
- W4313407850 hasConcept C2777984123 @default.
- W4313407850 hasConcept C33923547 @default.
- W4313407850 hasConcept C41008148 @default.
- W4313407850 hasConcept C41608201 @default.
- W4313407850 hasConcept C67820243 @default.
- W4313407850 hasConcept C7797323 @default.
- W4313407850 hasConcept C80444323 @default.
- W4313407850 hasConcept C90805587 @default.
- W4313407850 hasConceptScore W4313407850C11413529 @default.
- W4313407850 hasConceptScore W4313407850C134306372 @default.
- W4313407850 hasConceptScore W4313407850C152139883 @default.
- W4313407850 hasConceptScore W4313407850C154945302 @default.
- W4313407850 hasConceptScore W4313407850C17744445 @default.
- W4313407850 hasConceptScore W4313407850C184898388 @default.
- W4313407850 hasConceptScore W4313407850C199539241 @default.
- W4313407850 hasConceptScore W4313407850C2524010 @default.
- W4313407850 hasConceptScore W4313407850C2777462759 @default.
- W4313407850 hasConceptScore W4313407850C2777984123 @default.
- W4313407850 hasConceptScore W4313407850C33923547 @default.
- W4313407850 hasConceptScore W4313407850C41008148 @default.
- W4313407850 hasConceptScore W4313407850C41608201 @default.
- W4313407850 hasConceptScore W4313407850C67820243 @default.
- W4313407850 hasConceptScore W4313407850C7797323 @default.
- W4313407850 hasConceptScore W4313407850C80444323 @default.
- W4313407850 hasConceptScore W4313407850C90805587 @default.
- W4313407850 hasLocation W43134078501 @default.
- W4313407850 hasLocation W43134078502 @default.
- W4313407850 hasLocation W43134078503 @default.
- W4313407850 hasOpenAccess W4313407850 @default.
- W4313407850 hasPrimaryLocation W43134078501 @default.
- W4313407850 hasRelatedWork W2161732531 @default.
- W4313407850 hasRelatedWork W2270208168 @default.
- W4313407850 hasRelatedWork W2949703561 @default.
- W4313407850 hasRelatedWork W2991485158 @default.
- W4313407850 hasRelatedWork W2993300079 @default.
- W4313407850 hasRelatedWork W3031457336 @default.
- W4313407850 hasRelatedWork W3107679445 @default.
- W4313407850 hasRelatedWork W3134737443 @default.
- W4313407850 hasRelatedWork W3143412223 @default.
- W4313407850 hasRelatedWork W4221011941 @default.
- W4313407850 hasVolume "6" @default.
- W4313407850 isParatext "false" @default.
- W4313407850 isRetracted "false" @default.
- W4313407850 workType "article" @default.