Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313408429> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4313408429 abstract "The economical and reliable design of steel-concrete composite structures relies on accurate predictions of the resistance of headed studs transferring the longitudinal shear forces between the two materials. The existing mechanics-based or empirical design equations do not always produce accurate and safe predictions of the stud shear resistance. This study presents the evaluation of nine machine learning (ML) algorithms and the development of optimized ML models for predicting the stud resistance. The ML models were trained and tested using databases of push-out test results for studs in both normal weight and lightweight concrete. The reliability of ML model predictions was evaluated in accordance with European and US design practices. Reduction coefficients required for the ML models to satisfy the Eurocode reliability requirements for the design shear resistance were determined. Resistance factors used in US design practice were also obtained. The developed ML models were interpreted using the SHapley Additive exPlanations (SHAP) method. Predictions by the ML models were compared with those by the existing descriptive equations, which demonstrated a higher accuracy for the ML models. A web application that conveniently provides predictions of the nominal and design stud shear resistances by the developed ML models in accordance with both European and US design practices was created and deployed to the cloud." @default.
- W4313408429 created "2023-01-06" @default.
- W4313408429 creator A5015538365 @default.
- W4313408429 creator A5030297861 @default.
- W4313408429 date "2022-12-19" @default.
- W4313408429 modified "2023-10-14" @default.
- W4313408429 title "Reliability-based design shear resistance of headed studs in solid slabs predicted by machine learning models" @default.
- W4313408429 cites W1484201893 @default.
- W4313408429 cites W1678356000 @default.
- W4313408429 cites W1930624869 @default.
- W4313408429 cites W2041131186 @default.
- W4313408429 cites W2065127396 @default.
- W4313408429 cites W2156909104 @default.
- W4313408429 cites W2169245194 @default.
- W4313408429 cites W2298027384 @default.
- W4313408429 cites W2664267452 @default.
- W4313408429 cites W2762711636 @default.
- W4313408429 cites W2787894218 @default.
- W4313408429 cites W2807042118 @default.
- W4313408429 cites W2810365858 @default.
- W4313408429 cites W2896556344 @default.
- W4313408429 cites W2911964244 @default.
- W4313408429 cites W3012481664 @default.
- W4313408429 cites W3088230658 @default.
- W4313408429 cites W3089246515 @default.
- W4313408429 cites W3102476541 @default.
- W4313408429 cites W3145568218 @default.
- W4313408429 cites W3174425750 @default.
- W4313408429 cites W3174942219 @default.
- W4313408429 cites W3175716836 @default.
- W4313408429 cites W3177765094 @default.
- W4313408429 cites W3182706339 @default.
- W4313408429 cites W3184673931 @default.
- W4313408429 cites W3197661187 @default.
- W4313408429 cites W3215109731 @default.
- W4313408429 cites W4205445928 @default.
- W4313408429 cites W4207073938 @default.
- W4313408429 cites W4213248101 @default.
- W4313408429 cites W4220880827 @default.
- W4313408429 cites W4224911188 @default.
- W4313408429 cites W4239510810 @default.
- W4313408429 cites W4250344403 @default.
- W4313408429 doi "https://doi.org/10.1007/s44150-022-00078-1" @default.
- W4313408429 hasPublicationYear "2022" @default.
- W4313408429 type Work @default.
- W4313408429 citedByCount "0" @default.
- W4313408429 crossrefType "journal-article" @default.
- W4313408429 hasAuthorship W4313408429A5015538365 @default.
- W4313408429 hasAuthorship W4313408429A5030297861 @default.
- W4313408429 hasBestOaLocation W43134084291 @default.
- W4313408429 hasConcept C121332964 @default.
- W4313408429 hasConcept C127413603 @default.
- W4313408429 hasConcept C159985019 @default.
- W4313408429 hasConcept C163258240 @default.
- W4313408429 hasConcept C181781793 @default.
- W4313408429 hasConcept C192562407 @default.
- W4313408429 hasConcept C33923547 @default.
- W4313408429 hasConcept C41008148 @default.
- W4313408429 hasConcept C43214815 @default.
- W4313408429 hasConcept C62520636 @default.
- W4313408429 hasConcept C66938386 @default.
- W4313408429 hasConcept C96035792 @default.
- W4313408429 hasConceptScore W4313408429C121332964 @default.
- W4313408429 hasConceptScore W4313408429C127413603 @default.
- W4313408429 hasConceptScore W4313408429C159985019 @default.
- W4313408429 hasConceptScore W4313408429C163258240 @default.
- W4313408429 hasConceptScore W4313408429C181781793 @default.
- W4313408429 hasConceptScore W4313408429C192562407 @default.
- W4313408429 hasConceptScore W4313408429C33923547 @default.
- W4313408429 hasConceptScore W4313408429C41008148 @default.
- W4313408429 hasConceptScore W4313408429C43214815 @default.
- W4313408429 hasConceptScore W4313408429C62520636 @default.
- W4313408429 hasConceptScore W4313408429C66938386 @default.
- W4313408429 hasConceptScore W4313408429C96035792 @default.
- W4313408429 hasLocation W43134084291 @default.
- W4313408429 hasOpenAccess W4313408429 @default.
- W4313408429 hasPrimaryLocation W43134084291 @default.
- W4313408429 hasRelatedWork W1958633273 @default.
- W4313408429 hasRelatedWork W1964022544 @default.
- W4313408429 hasRelatedWork W2003871526 @default.
- W4313408429 hasRelatedWork W2023837288 @default.
- W4313408429 hasRelatedWork W2065025768 @default.
- W4313408429 hasRelatedWork W2073605666 @default.
- W4313408429 hasRelatedWork W2383020076 @default.
- W4313408429 hasRelatedWork W2588664421 @default.
- W4313408429 hasRelatedWork W2763538606 @default.
- W4313408429 hasRelatedWork W3019287391 @default.
- W4313408429 isParatext "false" @default.
- W4313408429 isRetracted "false" @default.
- W4313408429 workType "article" @default.