Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313408508> ?p ?o ?g. }
- W4313408508 endingPage "4812" @default.
- W4313408508 startingPage "4812" @default.
- W4313408508 abstract "Traditional gas pipeline leak detection methods require task offload decisions in the cloud, which has low real time performance. The emergence of edge computing provides a solution by enabling offload decisions directly at the edge server, improving real-time performance; however, energy is the new bottleneck. Therefore, focusing on the gas transmission pipeline leakage detection scenario in real time, a novel detection algorithm that combines the benefits of both the heuristic algorithm and the advantage actor critic (AAC) algorithm is proposed in this paper. It aims at optimization with the goal of real-time guarantee of pipeline mapping analysis tasks and maximizing the survival time of portable gas leak detectors. Since the computing power of portable detection devices is limited, as they are powered by batteries, the main problem to be solved in this study is how to take into account the node energy overhead while guaranteeing the system performance requirements. By introducing the idea of edge computing and taking the mapping relationship between resource occupation and energy consumption as the starting point, the optimization model is established, with the goal to optimize the total system cost (TSC). This is composed of the node’s transmission energy consumption, local computing energy consumption, and residual electricity weight. In order to minimize TSC, the algorithm uses the AAC network to make task scheduling decisions and judge whether tasks need to be offloaded, and uses heuristic strategies and the Cauchy–Buniakowsky–Schwarz inequality to determine the allocation of communication resources. The experiments show that the proposed algorithm in this paper can meet the real-time requirements of the detector, and achieve lower energy consumption. The proposed algorithm saves approximately 56% of the system energy compared to the Deep Q Network (DQN) algorithm. Compared with the artificial gorilla troops Optimizer (GTO), the black widow optimization algorithm (BWOA), the exploration-enhanced grey wolf optimizer (EEGWO), the African vultures optimization algorithm (AVOA), and the driving training-based optimization (DTBO), it saves 21%, 38%, 30%, 31%, and 44% of energy consumption, respectively. Compared to the fully local computing and fully offloading algorithms, it saves 50% and 30%, respectively. Meanwhile, the task completion rate of this algorithm reaches 96.3%, which is the best real-time performance among these algorithms." @default.
- W4313408508 created "2023-01-06" @default.
- W4313408508 creator A5007491154 @default.
- W4313408508 creator A5011592850 @default.
- W4313408508 creator A5014696382 @default.
- W4313408508 creator A5023661730 @default.
- W4313408508 creator A5074340955 @default.
- W4313408508 creator A5090055224 @default.
- W4313408508 date "2022-12-18" @default.
- W4313408508 modified "2023-10-13" @default.
- W4313408508 title "Edge Computing Offloading Method Based on Deep Reinforcement Learning for Gas Pipeline Leak Detection" @default.
- W4313408508 cites W2056685021 @default.
- W4313408508 cites W2343908699 @default.
- W4313408508 cites W2778726590 @default.
- W4313408508 cites W2781935635 @default.
- W4313408508 cites W2786904977 @default.
- W4313408508 cites W2800992211 @default.
- W4313408508 cites W2805743122 @default.
- W4313408508 cites W2808381205 @default.
- W4313408508 cites W2811002385 @default.
- W4313408508 cites W2897798676 @default.
- W4313408508 cites W2898155611 @default.
- W4313408508 cites W2909977353 @default.
- W4313408508 cites W2917823826 @default.
- W4313408508 cites W2943780690 @default.
- W4313408508 cites W2945235903 @default.
- W4313408508 cites W2946337553 @default.
- W4313408508 cites W2963334314 @default.
- W4313408508 cites W2963376050 @default.
- W4313408508 cites W2979596121 @default.
- W4313408508 cites W2980570898 @default.
- W4313408508 cites W2990839184 @default.
- W4313408508 cites W3005566700 @default.
- W4313408508 cites W3011182939 @default.
- W4313408508 cites W3036787537 @default.
- W4313408508 cites W3047538493 @default.
- W4313408508 cites W3124943657 @default.
- W4313408508 cites W3161844359 @default.
- W4313408508 cites W3163903840 @default.
- W4313408508 cites W3185076117 @default.
- W4313408508 cites W3204805917 @default.
- W4313408508 cites W3217783515 @default.
- W4313408508 cites W4221072835 @default.
- W4313408508 cites W4224217753 @default.
- W4313408508 cites W4226061080 @default.
- W4313408508 cites W4281643310 @default.
- W4313408508 cites W4282938250 @default.
- W4313408508 doi "https://doi.org/10.3390/math10244812" @default.
- W4313408508 hasPublicationYear "2022" @default.
- W4313408508 type Work @default.
- W4313408508 citedByCount "2" @default.
- W4313408508 countsByYear W43134085082023 @default.
- W4313408508 crossrefType "journal-article" @default.
- W4313408508 hasAuthorship W4313408508A5007491154 @default.
- W4313408508 hasAuthorship W4313408508A5011592850 @default.
- W4313408508 hasAuthorship W4313408508A5014696382 @default.
- W4313408508 hasAuthorship W4313408508A5023661730 @default.
- W4313408508 hasAuthorship W4313408508A5074340955 @default.
- W4313408508 hasAuthorship W4313408508A5090055224 @default.
- W4313408508 hasBestOaLocation W43134085081 @default.
- W4313408508 hasConcept C111919701 @default.
- W4313408508 hasConcept C119599485 @default.
- W4313408508 hasConcept C120314980 @default.
- W4313408508 hasConcept C127413603 @default.
- W4313408508 hasConcept C149635348 @default.
- W4313408508 hasConcept C154945302 @default.
- W4313408508 hasConcept C173801870 @default.
- W4313408508 hasConcept C2778456923 @default.
- W4313408508 hasConcept C2780165032 @default.
- W4313408508 hasConcept C2780513914 @default.
- W4313408508 hasConcept C41008148 @default.
- W4313408508 hasConcept C43521106 @default.
- W4313408508 hasConcept C79403827 @default.
- W4313408508 hasConcept C79974875 @default.
- W4313408508 hasConcept C97541855 @default.
- W4313408508 hasConceptScore W4313408508C111919701 @default.
- W4313408508 hasConceptScore W4313408508C119599485 @default.
- W4313408508 hasConceptScore W4313408508C120314980 @default.
- W4313408508 hasConceptScore W4313408508C127413603 @default.
- W4313408508 hasConceptScore W4313408508C149635348 @default.
- W4313408508 hasConceptScore W4313408508C154945302 @default.
- W4313408508 hasConceptScore W4313408508C173801870 @default.
- W4313408508 hasConceptScore W4313408508C2778456923 @default.
- W4313408508 hasConceptScore W4313408508C2780165032 @default.
- W4313408508 hasConceptScore W4313408508C2780513914 @default.
- W4313408508 hasConceptScore W4313408508C41008148 @default.
- W4313408508 hasConceptScore W4313408508C43521106 @default.
- W4313408508 hasConceptScore W4313408508C79403827 @default.
- W4313408508 hasConceptScore W4313408508C79974875 @default.
- W4313408508 hasConceptScore W4313408508C97541855 @default.
- W4313408508 hasFunder F4320321001 @default.
- W4313408508 hasIssue "24" @default.
- W4313408508 hasLocation W43134085081 @default.
- W4313408508 hasOpenAccess W4313408508 @default.
- W4313408508 hasPrimaryLocation W43134085081 @default.
- W4313408508 hasRelatedWork W2553790935 @default.
- W4313408508 hasRelatedWork W2559753769 @default.
- W4313408508 hasRelatedWork W2560559762 @default.