Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313408643> ?p ?o ?g. }
- W4313408643 endingPage "6382" @default.
- W4313408643 startingPage "6382" @default.
- W4313408643 abstract "The improvement in computer vision, sensor quality, and remote sensing data availability makes satellite imagery increasingly useful for studying human settlements. Several challenges remain to be overcome for some types of settlements, particularly for internally displaced populations (IDPs) and refugee camps. Refugee-dwelling footprints and detailed information derived from satellite imagery are critical for a variety of applications, including humanitarian aid during disasters or conflicts. Nevertheless, extracting dwellings remains difficult due to their differing sizes, shapes, and location variations. In this study, we use U-Net and residual U-Net to deal with dwelling classification in a refugee camp in northern Cameroon, Africa. Specifically, two semantic segmentation networks are adapted and applied. A limited number of randomly divided sample patches is used to train and test the networks based on a single image of the WorldView-3 satellite. Our accuracy assessment was conducted using four different dwelling categories for classification purposes, using metrics such as Precision, Recall, F1, and Kappa coefficient. As a result, F1 ranges from 81% to over 99% and approximately 88.1% to 99.5% based on the U-Net and the residual U-Net, respectively." @default.
- W4313408643 created "2023-01-06" @default.
- W4313408643 creator A5033273961 @default.
- W4313408643 creator A5052982465 @default.
- W4313408643 creator A5074919292 @default.
- W4313408643 creator A5077995471 @default.
- W4313408643 creator A5089503857 @default.
- W4313408643 date "2022-12-16" @default.
- W4313408643 modified "2023-09-25" @default.
- W4313408643 title "Mapping Dwellings in IDP/Refugee Settlements Using Deep Learning" @default.
- W4313408643 cites W1901129140 @default.
- W4313408643 cites W1903029394 @default.
- W4313408643 cites W1992455895 @default.
- W4313408643 cites W2029546356 @default.
- W4313408643 cites W2042258854 @default.
- W4313408643 cites W2113180164 @default.
- W4313408643 cites W2143528876 @default.
- W4313408643 cites W2150418119 @default.
- W4313408643 cites W2181914484 @default.
- W4313408643 cites W2194775991 @default.
- W4313408643 cites W2472919595 @default.
- W4313408643 cites W2598175330 @default.
- W4313408643 cites W2774320778 @default.
- W4313408643 cites W2884821113 @default.
- W4313408643 cites W2887201190 @default.
- W4313408643 cites W2916440085 @default.
- W4313408643 cites W2941464622 @default.
- W4313408643 cites W2964287450 @default.
- W4313408643 cites W2967403871 @default.
- W4313408643 cites W2971911025 @default.
- W4313408643 cites W2973660294 @default.
- W4313408643 cites W2974382310 @default.
- W4313408643 cites W2980881023 @default.
- W4313408643 cites W2982994871 @default.
- W4313408643 cites W2986943971 @default.
- W4313408643 cites W2995525027 @default.
- W4313408643 cites W2998342770 @default.
- W4313408643 cites W3004517429 @default.
- W4313408643 cites W3010846872 @default.
- W4313408643 cites W3016102947 @default.
- W4313408643 cites W3017198067 @default.
- W4313408643 cites W3022142302 @default.
- W4313408643 cites W3030992380 @default.
- W4313408643 cites W3037528752 @default.
- W4313408643 cites W3038123963 @default.
- W4313408643 cites W3043036258 @default.
- W4313408643 cites W3091852895 @default.
- W4313408643 cites W3123352549 @default.
- W4313408643 cites W3157790373 @default.
- W4313408643 cites W3158152334 @default.
- W4313408643 cites W3173385720 @default.
- W4313408643 cites W3177272898 @default.
- W4313408643 cites W3178509082 @default.
- W4313408643 cites W3180938808 @default.
- W4313408643 cites W3209483374 @default.
- W4313408643 cites W3212011366 @default.
- W4313408643 cites W3216446284 @default.
- W4313408643 cites W4205425966 @default.
- W4313408643 cites W4210798489 @default.
- W4313408643 cites W4229054454 @default.
- W4313408643 cites W4281707042 @default.
- W4313408643 cites W4281751271 @default.
- W4313408643 cites W4281771653 @default.
- W4313408643 cites W4283022097 @default.
- W4313408643 cites W4283030004 @default.
- W4313408643 cites W4289443659 @default.
- W4313408643 cites W4308441285 @default.
- W4313408643 cites W4313148177 @default.
- W4313408643 doi "https://doi.org/10.3390/rs14246382" @default.
- W4313408643 hasPublicationYear "2022" @default.
- W4313408643 type Work @default.
- W4313408643 citedByCount "0" @default.
- W4313408643 crossrefType "journal-article" @default.
- W4313408643 hasAuthorship W4313408643A5033273961 @default.
- W4313408643 hasAuthorship W4313408643A5052982465 @default.
- W4313408643 hasAuthorship W4313408643A5074919292 @default.
- W4313408643 hasAuthorship W4313408643A5077995471 @default.
- W4313408643 hasAuthorship W4313408643A5089503857 @default.
- W4313408643 hasBestOaLocation W43134086431 @default.
- W4313408643 hasConcept C11413529 @default.
- W4313408643 hasConcept C119857082 @default.
- W4313408643 hasConcept C136197465 @default.
- W4313408643 hasConcept C154945302 @default.
- W4313408643 hasConcept C155512373 @default.
- W4313408643 hasConcept C163864269 @default.
- W4313408643 hasConcept C16678853 @default.
- W4313408643 hasConcept C166957645 @default.
- W4313408643 hasConcept C173145845 @default.
- W4313408643 hasConcept C185592680 @default.
- W4313408643 hasConcept C198531522 @default.
- W4313408643 hasConcept C205649164 @default.
- W4313408643 hasConcept C2778102629 @default.
- W4313408643 hasConcept C41008148 @default.
- W4313408643 hasConcept C43617362 @default.
- W4313408643 hasConcept C58640448 @default.
- W4313408643 hasConcept C62649853 @default.
- W4313408643 hasConcept C89600930 @default.
- W4313408643 hasConceptScore W4313408643C11413529 @default.