Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313408684> ?p ?o ?g. }
- W4313408684 endingPage "422" @default.
- W4313408684 startingPage "422" @default.
- W4313408684 abstract "Remote-sensing processes based on unmanned aerial vehicles (UAV) have opened up new possibilities to both map and extract individual plant parameters. This is mainly due to the high spatial data resolution and acquisition flexibility of UAVs. Among the possible plant-related metrics is the leaf area index (LAI), which has already been successfully estimated in agronomy and forestry studies using the traditional normalized difference vegetation index from multispectral data or using hyperspectral data. However, the LAI has not been estimated in chestnut trees, and few studies have explored the use of multiple vegetation indices to improve LAI estimation from aerial imagery acquired by UAVs. This study uses multispectral UAV-based data from a chestnut grove to estimate the LAI for each tree by combining vegetation indices computed from different segments of the electromagnetic spectrum with geometrical parameters. Machine-learning techniques were evaluated to predict LAI with robust algorithms that consider dimensionality reduction, avoiding over-fitting, and reduce bias and excess variability. The best achieved coefficient of determination (R2) value of 85%, which shows that the biophysical and geometrical parameters can explain the LAI variability. This result proves that LAI estimation is improved when using multiple variables instead of a single vegetation index. Furthermore, another significant contribution is a simple, reliable, and precise model that relies on only two variables to estimate the LAI in individual chestnut trees." @default.
- W4313408684 created "2023-01-06" @default.
- W4313408684 creator A5020489061 @default.
- W4313408684 creator A5034959467 @default.
- W4313408684 creator A5066556659 @default.
- W4313408684 creator A5074749012 @default.
- W4313408684 creator A5080545852 @default.
- W4313408684 date "2022-12-16" @default.
- W4313408684 modified "2023-09-30" @default.
- W4313408684 title "Mapping the Leaf Area Index of Castanea sativa Miller Using UAV-Based Multispectral and Geometrical Data" @default.
- W4313408684 cites W166713746 @default.
- W4313408684 cites W1964217023 @default.
- W4313408684 cites W1966006391 @default.
- W4313408684 cites W1969415786 @default.
- W4313408684 cites W1977336591 @default.
- W4313408684 cites W1995103915 @default.
- W4313408684 cites W2000613913 @default.
- W4313408684 cites W2003099669 @default.
- W4313408684 cites W2025818287 @default.
- W4313408684 cites W2025967407 @default.
- W4313408684 cites W2029953723 @default.
- W4313408684 cites W2033192477 @default.
- W4313408684 cites W2043117039 @default.
- W4313408684 cites W2063623478 @default.
- W4313408684 cites W2063715236 @default.
- W4313408684 cites W2069209512 @default.
- W4313408684 cites W2071878928 @default.
- W4313408684 cites W2085445625 @default.
- W4313408684 cites W2089101419 @default.
- W4313408684 cites W2092602731 @default.
- W4313408684 cites W2094677081 @default.
- W4313408684 cites W2110079015 @default.
- W4313408684 cites W2113410727 @default.
- W4313408684 cites W2116635928 @default.
- W4313408684 cites W2119725424 @default.
- W4313408684 cites W2134560790 @default.
- W4313408684 cites W2143494625 @default.
- W4313408684 cites W2160840986 @default.
- W4313408684 cites W2161815745 @default.
- W4313408684 cites W2166516660 @default.
- W4313408684 cites W2251608823 @default.
- W4313408684 cites W2270167675 @default.
- W4313408684 cites W2298473705 @default.
- W4313408684 cites W2301217556 @default.
- W4313408684 cites W2342430100 @default.
- W4313408684 cites W2462586880 @default.
- W4313408684 cites W248389711 @default.
- W4313408684 cites W2500151196 @default.
- W4313408684 cites W2583381029 @default.
- W4313408684 cites W2589729182 @default.
- W4313408684 cites W2591487864 @default.
- W4313408684 cites W2591568213 @default.
- W4313408684 cites W2598591505 @default.
- W4313408684 cites W2600037548 @default.
- W4313408684 cites W2605853012 @default.
- W4313408684 cites W2611638994 @default.
- W4313408684 cites W2774550616 @default.
- W4313408684 cites W2775626082 @default.
- W4313408684 cites W2780578005 @default.
- W4313408684 cites W2889218990 @default.
- W4313408684 cites W2902904112 @default.
- W4313408684 cites W2911264809 @default.
- W4313408684 cites W2915777673 @default.
- W4313408684 cites W2938586265 @default.
- W4313408684 cites W2964415981 @default.
- W4313408684 cites W2986062584 @default.
- W4313408684 cites W3038890942 @default.
- W4313408684 cites W3087777471 @default.
- W4313408684 cites W3088154325 @default.
- W4313408684 cites W3088877620 @default.
- W4313408684 cites W3089950651 @default.
- W4313408684 cites W3130251494 @default.
- W4313408684 cites W3133861917 @default.
- W4313408684 cites W3137564971 @default.
- W4313408684 cites W3192300511 @default.
- W4313408684 cites W4200406763 @default.
- W4313408684 cites W4200536651 @default.
- W4313408684 cites W4206781954 @default.
- W4313408684 cites W4280578135 @default.
- W4313408684 cites W2168315562 @default.
- W4313408684 doi "https://doi.org/10.3390/drones6120422" @default.
- W4313408684 hasPublicationYear "2022" @default.
- W4313408684 type Work @default.
- W4313408684 citedByCount "2" @default.
- W4313408684 countsByYear W43134086842023 @default.
- W4313408684 crossrefType "journal-article" @default.
- W4313408684 hasAuthorship W4313408684A5020489061 @default.
- W4313408684 hasAuthorship W4313408684A5034959467 @default.
- W4313408684 hasAuthorship W4313408684A5066556659 @default.
- W4313408684 hasAuthorship W4313408684A5074749012 @default.
- W4313408684 hasAuthorship W4313408684A5080545852 @default.
- W4313408684 hasBestOaLocation W43134086841 @default.
- W4313408684 hasConcept C104541649 @default.
- W4313408684 hasConcept C142724271 @default.
- W4313408684 hasConcept C159078339 @default.
- W4313408684 hasConcept C173163844 @default.
- W4313408684 hasConcept C18903297 @default.
- W4313408684 hasConcept C205649164 @default.