Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313408737> ?p ?o ?g. }
- W4313408737 endingPage "6376" @default.
- W4313408737 startingPage "6376" @default.
- W4313408737 abstract "Due to the natural conditions and inappropriate management responses, large part of plains and forests in Iran have been burned in recent years. Given the increasing availability of open-access satellite images and open-source software packages, we developed a fast and cost-effective remote sensing methodology for characterizing burned areas for the entire country of Iran. We mapped the fire-affected areas using a post-classification supervised method and Landsat 8 time-series images. To this end, the Google Earth Engine (GEE) and Google Colab computing services were used to facilitate the downloading and processing of images as well as allowing for effective implementation of the algorithms. In total, 13 spectral indices were calculated using Landsat 8 images and were added to the nine original bands of Landsat 8. The training polygons of the burned and unburned areas were accurately distinguished based on the information acquired from the Iranian Space Agency (ISA), Sentinel-2 images, and Fire Information for Resource Management System (FIRMS) products. A combination of Genetic Algorithm (GA) and Neural Network (NN) approaches was then implemented to specify 19 optimal features out of the 22 bands. The 19 optimal bands were subsequently applied to two classifiers of NN and Random Forest (RF) in the timespans of 1 January 2019 to 30 December 2020 and of 1 January 2021 to 30 September 2021. The overall classification accuracies of 94% and 96% were obtained for these two classifiers, respectively. The omission and commission errors of both classifiers were also less than 10%, indicating the promising capability of the proposed methodology in detecting the burned areas. To detect the burned areas caused by the wildfire in 2021, the image differencing method was used as well. The resultant models were finally compared to the MODIS fire products over 10 sampled polygons of the burned areas. Overall, the models had a high accuracy in detecting the burned areas in terms of shape and perimeter, which can be further implicated for potential prevention strategies of endangered biodiversity." @default.
- W4313408737 created "2023-01-06" @default.
- W4313408737 creator A5003591539 @default.
- W4313408737 creator A5013711659 @default.
- W4313408737 creator A5020765155 @default.
- W4313408737 creator A5086118159 @default.
- W4313408737 date "2022-12-16" @default.
- W4313408737 modified "2023-10-09" @default.
- W4313408737 title "Automatic Mapping of Burned Areas Using Landsat 8 Time-Series Images in Google Earth Engine: A Case Study from Iran" @default.
- W4313408737 cites W1964217023 @default.
- W4313408737 cites W1967049547 @default.
- W4313408737 cites W1979305736 @default.
- W4313408737 cites W1994508789 @default.
- W4313408737 cites W1998733631 @default.
- W4313408737 cites W2000613913 @default.
- W4313408737 cites W2029975600 @default.
- W4313408737 cites W2046153185 @default.
- W4313408737 cites W2132716282 @default.
- W4313408737 cites W2138916851 @default.
- W4313408737 cites W2149939703 @default.
- W4313408737 cites W2154506590 @default.
- W4313408737 cites W2154636369 @default.
- W4313408737 cites W2170505850 @default.
- W4313408737 cites W2557402288 @default.
- W4313408737 cites W2577987446 @default.
- W4313408737 cites W2729813113 @default.
- W4313408737 cites W2737778496 @default.
- W4313408737 cites W2767746666 @default.
- W4313408737 cites W2789751949 @default.
- W4313408737 cites W2791315675 @default.
- W4313408737 cites W2792301033 @default.
- W4313408737 cites W2792431031 @default.
- W4313408737 cites W2800240447 @default.
- W4313408737 cites W2802685919 @default.
- W4313408737 cites W2805696714 @default.
- W4313408737 cites W2806810430 @default.
- W4313408737 cites W2886575119 @default.
- W4313408737 cites W2902112804 @default.
- W4313408737 cites W2905880828 @default.
- W4313408737 cites W2907459272 @default.
- W4313408737 cites W2922390763 @default.
- W4313408737 cites W2922428068 @default.
- W4313408737 cites W2938610884 @default.
- W4313408737 cites W2942173665 @default.
- W4313408737 cites W2944764093 @default.
- W4313408737 cites W2949443387 @default.
- W4313408737 cites W2958038879 @default.
- W4313408737 cites W2964069799 @default.
- W4313408737 cites W2965951776 @default.
- W4313408737 cites W2994639653 @default.
- W4313408737 cites W2996948100 @default.
- W4313408737 cites W3008427521 @default.
- W4313408737 cites W3011435629 @default.
- W4313408737 cites W3011614889 @default.
- W4313408737 cites W3015451150 @default.
- W4313408737 cites W3019451942 @default.
- W4313408737 cites W3028628556 @default.
- W4313408737 cites W3028904023 @default.
- W4313408737 cites W3037587714 @default.
- W4313408737 cites W3038833292 @default.
- W4313408737 cites W3045585619 @default.
- W4313408737 cites W3045755298 @default.
- W4313408737 cites W3082766779 @default.
- W4313408737 cites W3088028382 @default.
- W4313408737 cites W3088162569 @default.
- W4313408737 cites W3096462768 @default.
- W4313408737 cites W3106378566 @default.
- W4313408737 cites W3114429882 @default.
- W4313408737 cites W3115462085 @default.
- W4313408737 cites W3119886183 @default.
- W4313408737 cites W3126691167 @default.
- W4313408737 cites W3126846248 @default.
- W4313408737 cites W3127729533 @default.
- W4313408737 cites W3133793930 @default.
- W4313408737 cites W3134883029 @default.
- W4313408737 cites W3182928821 @default.
- W4313408737 cites W3187037246 @default.
- W4313408737 cites W3196720155 @default.
- W4313408737 cites W4292451749 @default.
- W4313408737 cites W4294214983 @default.
- W4313408737 doi "https://doi.org/10.3390/rs14246376" @default.
- W4313408737 hasPublicationYear "2022" @default.
- W4313408737 type Work @default.
- W4313408737 citedByCount "4" @default.
- W4313408737 countsByYear W43134087372023 @default.
- W4313408737 crossrefType "journal-article" @default.
- W4313408737 hasAuthorship W4313408737A5003591539 @default.
- W4313408737 hasAuthorship W4313408737A5013711659 @default.
- W4313408737 hasAuthorship W4313408737A5020765155 @default.
- W4313408737 hasAuthorship W4313408737A5086118159 @default.
- W4313408737 hasBestOaLocation W43134087371 @default.
- W4313408737 hasConcept C111919701 @default.
- W4313408737 hasConcept C124101348 @default.
- W4313408737 hasConcept C127413603 @default.
- W4313408737 hasConcept C146978453 @default.
- W4313408737 hasConcept C154945302 @default.
- W4313408737 hasConcept C169258074 @default.
- W4313408737 hasConcept C19269812 @default.