Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313409448> ?p ?o ?g. }
- W4313409448 endingPage "65" @default.
- W4313409448 startingPage "65" @default.
- W4313409448 abstract "Airborne LiDAR has been extensively used for estimating and mapping forest attributes at various scales. However, most models have been developed separately and independently without considering the intrinsic mathematical relationships and correlations among the estimates, which results in the mathematical and biophysical incompatibility of the estimates. In this paper, using the measurement error model approach, the error-in-variable simultaneous equation (SEq) for airborne LiDAR-assisted estimations of four forest attributes (stand volume, V; basal area, G; mean stand height, H; and diameter at breast height, D) for four forest types (Chinese fir, pine, eucalyptus, and broad-leaved forest) is developed and compared to the independence models (IMs). The results indicated that both the SEqs and IMs performed well, and the rRMSEs of the SEqs were slightly larger than those of the IMs, while the increases in rRMSE were less than 2% for the SEqs. There were statistically significant differences (α = 0.05) in the means of the estimates between SEqs and IMs, even though their average differences were less than ±1.0% for most attributes. There were no statistically significant differences in the mean estimates between SEqs, except for the estimates of the D and G of the eucalyptus forest. The SEqs with H and G as the endogenous variables (EVs) to estimate V performed slightly better than other SEqs in the fir, pine, and broad-leaved forests. The SEq that used D, H, and V as the EVs for estimating G was best in the eucalyptus forests. The SEq ensures the definite mathematical relationship among the estimates of forest attributes is maintained, which is consistent with forest measurement principles and therefore facilitates forest resource management applications, which is an issue that needs to be addressed for airborne LIDAR forest parameter estimation." @default.
- W4313409448 created "2023-01-06" @default.
- W4313409448 creator A5010444377 @default.
- W4313409448 creator A5026891491 @default.
- W4313409448 creator A5034180565 @default.
- W4313409448 creator A5040612787 @default.
- W4313409448 creator A5041723924 @default.
- W4313409448 date "2022-12-29" @default.
- W4313409448 modified "2023-09-26" @default.
- W4313409448 title "Using the Error-in-Variable Simultaneous Equations Approach to Construct Compatible Estimation Models of Forest Inventory Attributes Based on Airborne LiDAR" @default.
- W4313409448 cites W1965597456 @default.
- W4313409448 cites W1968961560 @default.
- W4313409448 cites W1971106443 @default.
- W4313409448 cites W1991576283 @default.
- W4313409448 cites W1996263757 @default.
- W4313409448 cites W1998324985 @default.
- W4313409448 cites W2002730835 @default.
- W4313409448 cites W2019126302 @default.
- W4313409448 cites W2028901390 @default.
- W4313409448 cites W2049297026 @default.
- W4313409448 cites W2055449289 @default.
- W4313409448 cites W2058700651 @default.
- W4313409448 cites W2074706991 @default.
- W4313409448 cites W2074723377 @default.
- W4313409448 cites W2078073057 @default.
- W4313409448 cites W2101365296 @default.
- W4313409448 cites W2108891443 @default.
- W4313409448 cites W2110221217 @default.
- W4313409448 cites W2110992863 @default.
- W4313409448 cites W2113488626 @default.
- W4313409448 cites W2114750096 @default.
- W4313409448 cites W2135030383 @default.
- W4313409448 cites W2140899781 @default.
- W4313409448 cites W2157913937 @default.
- W4313409448 cites W2159470716 @default.
- W4313409448 cites W2169874044 @default.
- W4313409448 cites W2194590177 @default.
- W4313409448 cites W2265026560 @default.
- W4313409448 cites W2338625058 @default.
- W4313409448 cites W2430239505 @default.
- W4313409448 cites W2559736737 @default.
- W4313409448 cites W2751581825 @default.
- W4313409448 cites W2754622441 @default.
- W4313409448 cites W2794437207 @default.
- W4313409448 cites W2797500786 @default.
- W4313409448 cites W2919211848 @default.
- W4313409448 cites W3037758462 @default.
- W4313409448 cites W3042740683 @default.
- W4313409448 cites W3048071039 @default.
- W4313409448 cites W3157504330 @default.
- W4313409448 cites W3158405682 @default.
- W4313409448 cites W3216079496 @default.
- W4313409448 doi "https://doi.org/10.3390/f14010065" @default.
- W4313409448 hasPublicationYear "2022" @default.
- W4313409448 type Work @default.
- W4313409448 citedByCount "1" @default.
- W4313409448 countsByYear W43134094482023 @default.
- W4313409448 crossrefType "journal-article" @default.
- W4313409448 hasAuthorship W4313409448A5010444377 @default.
- W4313409448 hasAuthorship W4313409448A5026891491 @default.
- W4313409448 hasAuthorship W4313409448A5034180565 @default.
- W4313409448 hasAuthorship W4313409448A5040612787 @default.
- W4313409448 hasAuthorship W4313409448A5041723924 @default.
- W4313409448 hasBestOaLocation W43134094481 @default.
- W4313409448 hasConcept C105795698 @default.
- W4313409448 hasConcept C139945424 @default.
- W4313409448 hasConcept C147103442 @default.
- W4313409448 hasConcept C162324750 @default.
- W4313409448 hasConcept C187736073 @default.
- W4313409448 hasConcept C18903297 @default.
- W4313409448 hasConcept C205649164 @default.
- W4313409448 hasConcept C2779752776 @default.
- W4313409448 hasConcept C28631016 @default.
- W4313409448 hasConcept C33923547 @default.
- W4313409448 hasConcept C35651441 @default.
- W4313409448 hasConcept C39432304 @default.
- W4313409448 hasConcept C51399673 @default.
- W4313409448 hasConcept C54286561 @default.
- W4313409448 hasConcept C62649853 @default.
- W4313409448 hasConcept C86803240 @default.
- W4313409448 hasConcept C91354502 @default.
- W4313409448 hasConcept C96250715 @default.
- W4313409448 hasConcept C97137747 @default.
- W4313409448 hasConceptScore W4313409448C105795698 @default.
- W4313409448 hasConceptScore W4313409448C139945424 @default.
- W4313409448 hasConceptScore W4313409448C147103442 @default.
- W4313409448 hasConceptScore W4313409448C162324750 @default.
- W4313409448 hasConceptScore W4313409448C187736073 @default.
- W4313409448 hasConceptScore W4313409448C18903297 @default.
- W4313409448 hasConceptScore W4313409448C205649164 @default.
- W4313409448 hasConceptScore W4313409448C2779752776 @default.
- W4313409448 hasConceptScore W4313409448C28631016 @default.
- W4313409448 hasConceptScore W4313409448C33923547 @default.
- W4313409448 hasConceptScore W4313409448C35651441 @default.
- W4313409448 hasConceptScore W4313409448C39432304 @default.
- W4313409448 hasConceptScore W4313409448C51399673 @default.
- W4313409448 hasConceptScore W4313409448C54286561 @default.
- W4313409448 hasConceptScore W4313409448C62649853 @default.