Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313409637> ?p ?o ?g. }
- W4313409637 endingPage "71" @default.
- W4313409637 startingPage "71" @default.
- W4313409637 abstract "Objectives: Hemispherotomy (HT) is a surgical option for treatment of drug-resistant seizures due to hemispheric structural lesions. Factors affecting seizure outcome have not been fully clarified. In our study, we used a brain Machine Learning (ML) approach to evaluate the possible role of Inter-hemispheric EEG Connectivity (IC) in predicting post-surgical seizure outcome. Methods: We collected 21 pediatric patients with drug-resistant epilepsy; who underwent HT in our center from 2009 to 2020; with a follow-up of at least two years. We selected 5-s windows of wakefulness and sleep pre-surgical EEG and we trained Artificial Neuronal Network (ANN) to estimate epilepsy outcome. We extracted EEG features as input data and selected the ANN with best accuracy. Results: Among 21 patients, 15 (71%) were seizure and drug-free at last follow-up. ANN showed 73.3% of accuracy, with 85% of seizure free and 40% of non-seizure free patients appropriately classified. Conclusions: The accuracy level that we reached supports the hypothesis that pre-surgical EEG features may have the potential to predict epilepsy outcome after HT. Significance: The role of pre-surgical EEG data in influencing seizure outcome after HT is still debated. We proposed a computational predictive model, with an ML approach, with a high accuracy level." @default.
- W4313409637 created "2023-01-06" @default.
- W4313409637 creator A5001020536 @default.
- W4313409637 creator A5019401592 @default.
- W4313409637 creator A5025007479 @default.
- W4313409637 creator A5025783375 @default.
- W4313409637 creator A5032423722 @default.
- W4313409637 creator A5034668150 @default.
- W4313409637 creator A5038813340 @default.
- W4313409637 creator A5063907560 @default.
- W4313409637 creator A5066298038 @default.
- W4313409637 creator A5084755901 @default.
- W4313409637 date "2022-12-30" @default.
- W4313409637 modified "2023-10-18" @default.
- W4313409637 title "Can Presurgical Interhemispheric EEG Connectivity Predict Outcome in Hemispheric Surgery? A Brain Machine Learning Approach" @default.
- W4313409637 cites W1499705617 @default.
- W4313409637 cites W1505191356 @default.
- W4313409637 cites W1514374473 @default.
- W4313409637 cites W1604647538 @default.
- W4313409637 cites W1839936022 @default.
- W4313409637 cites W1850625879 @default.
- W4313409637 cites W1963946257 @default.
- W4313409637 cites W1966813865 @default.
- W4313409637 cites W1970807601 @default.
- W4313409637 cites W1980630988 @default.
- W4313409637 cites W1981838402 @default.
- W4313409637 cites W1984053826 @default.
- W4313409637 cites W1985638627 @default.
- W4313409637 cites W1991368424 @default.
- W4313409637 cites W1992604168 @default.
- W4313409637 cites W1993095020 @default.
- W4313409637 cites W1993123189 @default.
- W4313409637 cites W1993804466 @default.
- W4313409637 cites W2003676016 @default.
- W4313409637 cites W2024313987 @default.
- W4313409637 cites W2025304637 @default.
- W4313409637 cites W2042323927 @default.
- W4313409637 cites W2056516077 @default.
- W4313409637 cites W2072958591 @default.
- W4313409637 cites W2079864878 @default.
- W4313409637 cites W2104240444 @default.
- W4313409637 cites W2117063392 @default.
- W4313409637 cites W2119705365 @default.
- W4313409637 cites W2132056466 @default.
- W4313409637 cites W2140550257 @default.
- W4313409637 cites W2142164352 @default.
- W4313409637 cites W2154626350 @default.
- W4313409637 cites W2167334234 @default.
- W4313409637 cites W2168696382 @default.
- W4313409637 cites W2219285239 @default.
- W4313409637 cites W2224348923 @default.
- W4313409637 cites W2316557706 @default.
- W4313409637 cites W2501784596 @default.
- W4313409637 cites W2586870310 @default.
- W4313409637 cites W2594644573 @default.
- W4313409637 cites W2623657848 @default.
- W4313409637 cites W2771066647 @default.
- W4313409637 cites W2881862143 @default.
- W4313409637 cites W2883747846 @default.
- W4313409637 cites W2887388803 @default.
- W4313409637 cites W2913723931 @default.
- W4313409637 cites W2913754932 @default.
- W4313409637 cites W2971893337 @default.
- W4313409637 cites W2989483620 @default.
- W4313409637 cites W3042619474 @default.
- W4313409637 cites W3045175357 @default.
- W4313409637 cites W3110332970 @default.
- W4313409637 cites W3136485170 @default.
- W4313409637 cites W4283591647 @default.
- W4313409637 doi "https://doi.org/10.3390/brainsci13010071" @default.
- W4313409637 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36672052" @default.
- W4313409637 hasPublicationYear "2022" @default.
- W4313409637 type Work @default.
- W4313409637 citedByCount "1" @default.
- W4313409637 countsByYear W43134096372023 @default.
- W4313409637 crossrefType "journal-article" @default.
- W4313409637 hasAuthorship W4313409637A5001020536 @default.
- W4313409637 hasAuthorship W4313409637A5019401592 @default.
- W4313409637 hasAuthorship W4313409637A5025007479 @default.
- W4313409637 hasAuthorship W4313409637A5025783375 @default.
- W4313409637 hasAuthorship W4313409637A5032423722 @default.
- W4313409637 hasAuthorship W4313409637A5034668150 @default.
- W4313409637 hasAuthorship W4313409637A5038813340 @default.
- W4313409637 hasAuthorship W4313409637A5063907560 @default.
- W4313409637 hasAuthorship W4313409637A5066298038 @default.
- W4313409637 hasAuthorship W4313409637A5084755901 @default.
- W4313409637 hasBestOaLocation W43134096371 @default.
- W4313409637 hasConcept C144237770 @default.
- W4313409637 hasConcept C148220186 @default.
- W4313409637 hasConcept C15744967 @default.
- W4313409637 hasConcept C169760540 @default.
- W4313409637 hasConcept C2778186239 @default.
- W4313409637 hasConcept C2779320081 @default.
- W4313409637 hasConcept C2780803581 @default.
- W4313409637 hasConcept C33923547 @default.
- W4313409637 hasConcept C42219234 @default.
- W4313409637 hasConcept C522805319 @default.
- W4313409637 hasConcept C71924100 @default.