Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313411041> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4313411041 endingPage "726" @default.
- W4313411041 startingPage "715" @default.
- W4313411041 abstract "Behavioral factors can affect the blood glucose (BG) levels in people with type 1 diabetes (T1D), therefore, their effects need to be incorporated in blood glucose management for these individuals. Accordingly, in this work, we study the effect of two behavioral states, physical activity (PA) and stress state (SS), on BG fluctuations in individuals with T1D. We provide two methods for quantifying biomarkers related to PA and SS using raw acceleration (ACC) and electrodermal activity (EDA) data collected with a wearable device. We evaluate the impact of PA and SS on BG fluctuation by adding the derived behavior-related biomarkers in two cutting-edge deep learning-based glucose predictive models, a long short-term memory (LSTM) and a convolutional neural network (CNN)-LSTM network, for prediction horizons (PHs) of 30, 60 and 90 min. Through an ablation study, we demonstrate that incorporating the estimated behavior-related biomarkers improves the BG predictive model’s performance obtaining mean absolute error (MAE) 9.13 ± 0.95, 17.75 ± 1.93 and 31.85 ± 2.88 in [mg/dL], root mean square error (RMSE), 12.35 ± 1.06, 24.71 ± 2.31 and 41.64 ± 4.12 in [mg/dL], and coefficient of determination (R2), 95.34 ± 3.34, 78.87 ± 4.35 and 60.11 ± 4.76 in [%], for the LSTM model; and MAE 9.37 ± 0.88, 17.87 ± 1.67 and 29.47 ± 2.13 in [mg/dL], RMSE 12.51 ± 1.40, 24.37 ± 2.49 and 39.52 ± 3.89 in [mg/dL], and R2 94.65 ± 3.90, 78.37 ± 4.11 and 61.12 ± 4.30 in [%], for the CNN-LSTM model, respectively, across all PHs. Additionally, we illustrate the generalizability of the proposed models by performing both population- and patient-wise." @default.
- W4313411041 created "2023-01-06" @default.
- W4313411041 creator A5021792279 @default.
- W4313411041 creator A5025446841 @default.
- W4313411041 creator A5033050371 @default.
- W4313411041 date "2022-12-16" @default.
- W4313411041 modified "2023-09-26" @default.
- W4313411041 title "Incorporating the Effect of Behavioral States in Multi-Step Ahead Deep Learning Based Multivariate Predictors for Blood Glucose Forecasting in Type 1 Diabetes" @default.
- W4313411041 cites W1857366857 @default.
- W4313411041 cites W1982063015 @default.
- W4313411041 cites W1986815545 @default.
- W4313411041 cites W2003643515 @default.
- W4313411041 cites W2067899502 @default.
- W4313411041 cites W2112577715 @default.
- W4313411041 cites W2163909061 @default.
- W4313411041 cites W2313835811 @default.
- W4313411041 cites W2523526638 @default.
- W4313411041 cites W2890627459 @default.
- W4313411041 cites W2898674996 @default.
- W4313411041 cites W2900619682 @default.
- W4313411041 cites W2959822813 @default.
- W4313411041 cites W2963123914 @default.
- W4313411041 cites W3012064747 @default.
- W4313411041 cites W3019069635 @default.
- W4313411041 cites W3119765427 @default.
- W4313411041 cites W3164642444 @default.
- W4313411041 cites W3165710528 @default.
- W4313411041 cites W3179363221 @default.
- W4313411041 cites W944776124 @default.
- W4313411041 doi "https://doi.org/10.3390/biomedinformatics2040048" @default.
- W4313411041 hasPublicationYear "2022" @default.
- W4313411041 type Work @default.
- W4313411041 citedByCount "1" @default.
- W4313411041 countsByYear W43134110412023 @default.
- W4313411041 crossrefType "journal-article" @default.
- W4313411041 hasAuthorship W4313411041A5021792279 @default.
- W4313411041 hasAuthorship W4313411041A5025446841 @default.
- W4313411041 hasAuthorship W4313411041A5033050371 @default.
- W4313411041 hasBestOaLocation W43134110411 @default.
- W4313411041 hasConcept C105795698 @default.
- W4313411041 hasConcept C119857082 @default.
- W4313411041 hasConcept C126322002 @default.
- W4313411041 hasConcept C134018914 @default.
- W4313411041 hasConcept C139945424 @default.
- W4313411041 hasConcept C154945302 @default.
- W4313411041 hasConcept C161584116 @default.
- W4313411041 hasConcept C2777180221 @default.
- W4313411041 hasConcept C33923547 @default.
- W4313411041 hasConcept C41008148 @default.
- W4313411041 hasConcept C555293320 @default.
- W4313411041 hasConcept C71924100 @default.
- W4313411041 hasConcept C81363708 @default.
- W4313411041 hasConceptScore W4313411041C105795698 @default.
- W4313411041 hasConceptScore W4313411041C119857082 @default.
- W4313411041 hasConceptScore W4313411041C126322002 @default.
- W4313411041 hasConceptScore W4313411041C134018914 @default.
- W4313411041 hasConceptScore W4313411041C139945424 @default.
- W4313411041 hasConceptScore W4313411041C154945302 @default.
- W4313411041 hasConceptScore W4313411041C161584116 @default.
- W4313411041 hasConceptScore W4313411041C2777180221 @default.
- W4313411041 hasConceptScore W4313411041C33923547 @default.
- W4313411041 hasConceptScore W4313411041C41008148 @default.
- W4313411041 hasConceptScore W4313411041C555293320 @default.
- W4313411041 hasConceptScore W4313411041C71924100 @default.
- W4313411041 hasConceptScore W4313411041C81363708 @default.
- W4313411041 hasIssue "4" @default.
- W4313411041 hasLocation W43134110411 @default.
- W4313411041 hasOpenAccess W4313411041 @default.
- W4313411041 hasPrimaryLocation W43134110411 @default.
- W4313411041 hasRelatedWork W1563850031 @default.
- W4313411041 hasRelatedWork W2415759662 @default.
- W4313411041 hasRelatedWork W2748952813 @default.
- W4313411041 hasRelatedWork W2887803518 @default.
- W4313411041 hasRelatedWork W2899084033 @default.
- W4313411041 hasRelatedWork W2995227436 @default.
- W4313411041 hasRelatedWork W3021430260 @default.
- W4313411041 hasRelatedWork W3027997911 @default.
- W4313411041 hasRelatedWork W3036934084 @default.
- W4313411041 hasRelatedWork W4287776258 @default.
- W4313411041 hasVolume "2" @default.
- W4313411041 isParatext "false" @default.
- W4313411041 isRetracted "false" @default.
- W4313411041 workType "article" @default.