Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313413400> ?p ?o ?g. }
- W4313413400 abstract "Machine learning (ML) techniques for predicting the progression of Alzheimer’s disease (AD) can greatly assist researchers and clinicians in establishing effective AD prevention and treatment strategies. The problems of monotonicity of data forms and scarcity of medical data are the main reasons that currently limit the performance of ML approaches. In this research, we propose a novel similarity-based quantification approach that simultaneously considers the magnitude and direction relationships of structural variations among brain biomarkers, and encodes quantified data as third-order tensors to solve problem of data form monotonicity, then combining tensor multi-tasking learning model to predict AD progression. In this model, the prediction of each patient is considered as a task, and each task shares a set of latent factors obtained by tensor decomposition, knowledge sharing between tasks can improve the generalization of the model and solve the problem of scarcity of medical data. The model can be utilised to efficiently predict the progression of AD integrating magnetic resonance imaging (MRI) data and cognitive scores of AD patients at different stages. To evaluate the effectiveness of the proposed approach, we conducted extensive experiments utilising MRI data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The results reveal that the proposed model predicts AD progression more accurately and consistently than single-task and state-of-the-art multi-task regression approaches on various cognitive scores. The proposed approach can recognize brain structural variation in patients and apply it to reliably predict and diagnose AD progression." @default.
- W4313413400 created "2023-01-06" @default.
- W4313413400 creator A5008066397 @default.
- W4313413400 creator A5015656384 @default.
- W4313413400 creator A5030717108 @default.
- W4313413400 creator A5071773009 @default.
- W4313413400 creator A5087223934 @default.
- W4313413400 date "2022-12-06" @default.
- W4313413400 modified "2023-10-16" @default.
- W4313413400 title "Modeling Alzheimer’s Disease Progression via Amalgamated Magnitude-Direction Brain Structure Variation Quantification and Tensor Multi-task Learning" @default.
- W4313413400 cites W1872034074 @default.
- W4313413400 cites W1983537704 @default.
- W4313413400 cites W1996118086 @default.
- W4313413400 cites W1998396170 @default.
- W4313413400 cites W2000292092 @default.
- W4313413400 cites W2009746375 @default.
- W4313413400 cites W2018096278 @default.
- W4313413400 cites W2024165284 @default.
- W4313413400 cites W2026498605 @default.
- W4313413400 cites W2031967811 @default.
- W4313413400 cites W2046024437 @default.
- W4313413400 cites W2057536936 @default.
- W4313413400 cites W2061699647 @default.
- W4313413400 cites W2065180801 @default.
- W4313413400 cites W2084358449 @default.
- W4313413400 cites W2135046866 @default.
- W4313413400 cites W2139784227 @default.
- W4313413400 cites W2158514158 @default.
- W4313413400 cites W2171405125 @default.
- W4313413400 cites W2394550695 @default.
- W4313413400 cites W2787980378 @default.
- W4313413400 cites W2809497023 @default.
- W4313413400 cites W2888918486 @default.
- W4313413400 cites W2901050968 @default.
- W4313413400 cites W2905038296 @default.
- W4313413400 cites W2912452970 @default.
- W4313413400 cites W3206956257 @default.
- W4313413400 cites W4214914147 @default.
- W4313413400 cites W4232630368 @default.
- W4313413400 cites W4255455317 @default.
- W4313413400 doi "https://doi.org/10.1109/bibm55620.2022.9995468" @default.
- W4313413400 hasPublicationYear "2022" @default.
- W4313413400 type Work @default.
- W4313413400 citedByCount "2" @default.
- W4313413400 countsByYear W43134134002023 @default.
- W4313413400 crossrefType "proceedings-article" @default.
- W4313413400 hasAuthorship W4313413400A5008066397 @default.
- W4313413400 hasAuthorship W4313413400A5015656384 @default.
- W4313413400 hasAuthorship W4313413400A5030717108 @default.
- W4313413400 hasAuthorship W4313413400A5071773009 @default.
- W4313413400 hasAuthorship W4313413400A5087223934 @default.
- W4313413400 hasConcept C11171543 @default.
- W4313413400 hasConcept C119857082 @default.
- W4313413400 hasConcept C134306372 @default.
- W4313413400 hasConcept C154945302 @default.
- W4313413400 hasConcept C155281189 @default.
- W4313413400 hasConcept C15744967 @default.
- W4313413400 hasConcept C162324750 @default.
- W4313413400 hasConcept C169760540 @default.
- W4313413400 hasConcept C169900460 @default.
- W4313413400 hasConcept C177148314 @default.
- W4313413400 hasConcept C177264268 @default.
- W4313413400 hasConcept C187736073 @default.
- W4313413400 hasConcept C199360897 @default.
- W4313413400 hasConcept C202444582 @default.
- W4313413400 hasConcept C2780451532 @default.
- W4313413400 hasConcept C28006648 @default.
- W4313413400 hasConcept C33923547 @default.
- W4313413400 hasConcept C41008148 @default.
- W4313413400 hasConcept C58693492 @default.
- W4313413400 hasConcept C72169020 @default.
- W4313413400 hasConcept C83546350 @default.
- W4313413400 hasConceptScore W4313413400C11171543 @default.
- W4313413400 hasConceptScore W4313413400C119857082 @default.
- W4313413400 hasConceptScore W4313413400C134306372 @default.
- W4313413400 hasConceptScore W4313413400C154945302 @default.
- W4313413400 hasConceptScore W4313413400C155281189 @default.
- W4313413400 hasConceptScore W4313413400C15744967 @default.
- W4313413400 hasConceptScore W4313413400C162324750 @default.
- W4313413400 hasConceptScore W4313413400C169760540 @default.
- W4313413400 hasConceptScore W4313413400C169900460 @default.
- W4313413400 hasConceptScore W4313413400C177148314 @default.
- W4313413400 hasConceptScore W4313413400C177264268 @default.
- W4313413400 hasConceptScore W4313413400C187736073 @default.
- W4313413400 hasConceptScore W4313413400C199360897 @default.
- W4313413400 hasConceptScore W4313413400C202444582 @default.
- W4313413400 hasConceptScore W4313413400C2780451532 @default.
- W4313413400 hasConceptScore W4313413400C28006648 @default.
- W4313413400 hasConceptScore W4313413400C33923547 @default.
- W4313413400 hasConceptScore W4313413400C41008148 @default.
- W4313413400 hasConceptScore W4313413400C58693492 @default.
- W4313413400 hasConceptScore W4313413400C72169020 @default.
- W4313413400 hasConceptScore W4313413400C83546350 @default.
- W4313413400 hasLocation W43134134001 @default.
- W4313413400 hasOpenAccess W4313413400 @default.
- W4313413400 hasPrimaryLocation W43134134001 @default.
- W4313413400 hasRelatedWork W1977981177 @default.
- W4313413400 hasRelatedWork W1990290471 @default.
- W4313413400 hasRelatedWork W2003813852 @default.
- W4313413400 hasRelatedWork W2005710836 @default.