Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313413542> ?p ?o ?g. }
- W4313413542 endingPage "87" @default.
- W4313413542 startingPage "87" @default.
- W4313413542 abstract "Land cover change detection (LCCD) with remote-sensed images plays an important role in observing Earth’s surface changes. In recent years, the use of a spatial-spectral channel attention mechanism in information processing has gained interest. In this study, aiming to improve the performance of LCCD with remote-sensed images, a novel spatial-spectral channel attention neural network (SSCAN) is proposed. In the proposed SSCAN, the spatial channel attention module and convolution block attention module are employed to process pre- and post-event images, respectively. In contrast to the scheme of traditional methods, the motivation of the proposed operation lies in amplifying the change magnitude among the changed areas and minimizing the change magnitude among the unchanged areas. Moreover, a simple but effective batch-size dynamic adjustment strategy is promoted to train the proposed SSCAN, thus guaranteeing convergence to the global optima of the objective function. Results from comparative experiments of seven cognate and state-of-the-art methods effectively demonstrate the superiority of the proposed network in accelerating the network convergence speed, reinforcing the learning efficiency, and improving the performance of LCCD. For example, the proposed SSCAN can achieve an improvement of approximately 0.17–23.84% in OA on Dataset-A." @default.
- W4313413542 created "2023-01-06" @default.
- W4313413542 creator A5002687387 @default.
- W4313413542 creator A5037694466 @default.
- W4313413542 creator A5047997045 @default.
- W4313413542 creator A5063591748 @default.
- W4313413542 date "2022-12-23" @default.
- W4313413542 modified "2023-10-16" @default.
- W4313413542 title "Novel Spatial–Spectral Channel Attention Neural Network for Land Cover Change Detection with Remote Sensed Images" @default.
- W4313413542 cites W2011572981 @default.
- W4313413542 cites W2062593139 @default.
- W4313413542 cites W2083822273 @default.
- W4313413542 cites W2161273109 @default.
- W4313413542 cites W2166052353 @default.
- W4313413542 cites W2176737848 @default.
- W4313413542 cites W2295862745 @default.
- W4313413542 cites W2530415363 @default.
- W4313413542 cites W2735042947 @default.
- W4313413542 cites W2737391801 @default.
- W4313413542 cites W2751993439 @default.
- W4313413542 cites W2783165089 @default.
- W4313413542 cites W2792827505 @default.
- W4313413542 cites W2894544606 @default.
- W4313413542 cites W2911805825 @default.
- W4313413542 cites W2940368062 @default.
- W4313413542 cites W2948648905 @default.
- W4313413542 cites W2953308875 @default.
- W4313413542 cites W2955058313 @default.
- W4313413542 cites W2963091558 @default.
- W4313413542 cites W2963727650 @default.
- W4313413542 cites W2990113328 @default.
- W4313413542 cites W3009942016 @default.
- W4313413542 cites W3015038817 @default.
- W4313413542 cites W3027201985 @default.
- W4313413542 cites W3033600255 @default.
- W4313413542 cites W3036453075 @default.
- W4313413542 cites W3066154933 @default.
- W4313413542 cites W3081744000 @default.
- W4313413542 cites W3111050907 @default.
- W4313413542 cites W3120467244 @default.
- W4313413542 cites W3131096279 @default.
- W4313413542 cites W3141138843 @default.
- W4313413542 cites W3142599962 @default.
- W4313413542 cites W3144332889 @default.
- W4313413542 cites W3163207600 @default.
- W4313413542 cites W3163972560 @default.
- W4313413542 cites W3177155650 @default.
- W4313413542 cites W3179303890 @default.
- W4313413542 cites W4213124617 @default.
- W4313413542 cites W4229002315 @default.
- W4313413542 cites W4285173877 @default.
- W4313413542 cites W4285243313 @default.
- W4313413542 cites W4312541757 @default.
- W4313413542 cites W4312685343 @default.
- W4313413542 cites W4313438466 @default.
- W4313413542 doi "https://doi.org/10.3390/rs15010087" @default.
- W4313413542 hasPublicationYear "2022" @default.
- W4313413542 type Work @default.
- W4313413542 citedByCount "1" @default.
- W4313413542 countsByYear W43134135422023 @default.
- W4313413542 crossrefType "journal-article" @default.
- W4313413542 hasAuthorship W4313413542A5002687387 @default.
- W4313413542 hasAuthorship W4313413542A5037694466 @default.
- W4313413542 hasAuthorship W4313413542A5047997045 @default.
- W4313413542 hasAuthorship W4313413542A5063591748 @default.
- W4313413542 hasBestOaLocation W43134135421 @default.
- W4313413542 hasConcept C127162648 @default.
- W4313413542 hasConcept C127413603 @default.
- W4313413542 hasConcept C147176958 @default.
- W4313413542 hasConcept C153180895 @default.
- W4313413542 hasConcept C154945302 @default.
- W4313413542 hasConcept C162324750 @default.
- W4313413542 hasConcept C203595873 @default.
- W4313413542 hasConcept C205649164 @default.
- W4313413542 hasConcept C2524010 @default.
- W4313413542 hasConcept C2777210771 @default.
- W4313413542 hasConcept C2777303404 @default.
- W4313413542 hasConcept C2780648208 @default.
- W4313413542 hasConcept C2993807640 @default.
- W4313413542 hasConcept C33923547 @default.
- W4313413542 hasConcept C41008148 @default.
- W4313413542 hasConcept C45347329 @default.
- W4313413542 hasConcept C4792198 @default.
- W4313413542 hasConcept C50522688 @default.
- W4313413542 hasConcept C50644808 @default.
- W4313413542 hasConcept C62649853 @default.
- W4313413542 hasConcept C76155785 @default.
- W4313413542 hasConceptScore W4313413542C127162648 @default.
- W4313413542 hasConceptScore W4313413542C127413603 @default.
- W4313413542 hasConceptScore W4313413542C147176958 @default.
- W4313413542 hasConceptScore W4313413542C153180895 @default.
- W4313413542 hasConceptScore W4313413542C154945302 @default.
- W4313413542 hasConceptScore W4313413542C162324750 @default.
- W4313413542 hasConceptScore W4313413542C203595873 @default.
- W4313413542 hasConceptScore W4313413542C205649164 @default.
- W4313413542 hasConceptScore W4313413542C2524010 @default.
- W4313413542 hasConceptScore W4313413542C2777210771 @default.
- W4313413542 hasConceptScore W4313413542C2777303404 @default.