Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313413760> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4313413760 abstract "The on-line partial discharge monitoring system has become a significant tool for protecting high voltage motors' stator winding from incipient failure. High voltage motors are typically produced through the Global vacuum pressure impregnation (VPI) process. Therefore, on-line partial discharge (PD) sensors, such as high voltage coupling capacitors, are connected to high voltage feeders in a terminal box. However, installing external PD sensors has additional costs and requires more effort. To overcome these disadvantages, researchers have developed a 6.6 kV Global VPI motor embedded with six capacitive slot coupler (CSC) PD sensors and successfully operated it in a power plant. In this report, a machine learning technique that can classify the defect types of stator windings is introduced. The classification process is based on the pattern recognition of phase-resolved partial discharge spectra obtained from CSC PD sensors. In recent decades, critical turn-to-turn insulation failures have been reported in many power plants. A research project that assesses the degradation condition of turn-to-turn insulation was initiated in 2020 to overcome these failures. The project's first goal was to find any parameter that can represent the degradation depth of turn-to-turn or strand-to-strand insulation. The second is to classify the type of insulation defect in stator windings. After reviewing several machine learning techniques, a multiclass support vector machine (SVM) was selected as the main classification algorithm. In the experiment, 35 stator windings with 4 defect types (slot discharge, turn insulation discharge, turn-to-main insulation discharge, and main insulation discharge) were trained using the SVM algorithm, and 7 test stator windings were selected to classify the defect types. Due to the small number of training samples, the classification accuracy was 71.4% with the radial basis function kernel. The accuracy is expected to improve further with a larger training sample. The application of sweep frequency response analysis is the third goal of the project for monitoring the health condition of the individual stator winding. This technique may contribute to assessing the deteriorated condition of turn insulation by switching surge." @default.
- W4313413760 created "2023-01-06" @default.
- W4313413760 creator A5040138172 @default.
- W4313413760 creator A5065385226 @default.
- W4313413760 creator A5073039234 @default.
- W4313413760 date "2022-11-13" @default.
- W4313413760 modified "2023-09-26" @default.
- W4313413760 title "Application of Machine Learning Technique and Sweep Frequency Response Analysis to Classify Stator Winding Insulation Defects" @default.
- W4313413760 cites W2067568670 @default.
- W4313413760 cites W2118294308 @default.
- W4313413760 cites W2132538277 @default.
- W4313413760 cites W2156520554 @default.
- W4313413760 cites W2164709882 @default.
- W4313413760 cites W2180015593 @default.
- W4313413760 cites W2274618150 @default.
- W4313413760 cites W4313520307 @default.
- W4313413760 doi "https://doi.org/10.23919/cmd54214.2022.9991700" @default.
- W4313413760 hasPublicationYear "2022" @default.
- W4313413760 type Work @default.
- W4313413760 citedByCount "0" @default.
- W4313413760 crossrefType "proceedings-article" @default.
- W4313413760 hasAuthorship W4313413760A5040138172 @default.
- W4313413760 hasAuthorship W4313413760A5065385226 @default.
- W4313413760 hasAuthorship W4313413760A5073039234 @default.
- W4313413760 hasConcept C119599485 @default.
- W4313413760 hasConcept C127413603 @default.
- W4313413760 hasConcept C130143024 @default.
- W4313413760 hasConcept C146778888 @default.
- W4313413760 hasConcept C165801399 @default.
- W4313413760 hasConcept C171146098 @default.
- W4313413760 hasConcept C206755178 @default.
- W4313413760 hasConcept C2776152135 @default.
- W4313413760 hasConcept C2776529397 @default.
- W4313413760 hasConcept C30403606 @default.
- W4313413760 hasConcept C41008148 @default.
- W4313413760 hasConcept C52192207 @default.
- W4313413760 hasConcept C78519656 @default.
- W4313413760 hasConcept C88182573 @default.
- W4313413760 hasConceptScore W4313413760C119599485 @default.
- W4313413760 hasConceptScore W4313413760C127413603 @default.
- W4313413760 hasConceptScore W4313413760C130143024 @default.
- W4313413760 hasConceptScore W4313413760C146778888 @default.
- W4313413760 hasConceptScore W4313413760C165801399 @default.
- W4313413760 hasConceptScore W4313413760C171146098 @default.
- W4313413760 hasConceptScore W4313413760C206755178 @default.
- W4313413760 hasConceptScore W4313413760C2776152135 @default.
- W4313413760 hasConceptScore W4313413760C2776529397 @default.
- W4313413760 hasConceptScore W4313413760C30403606 @default.
- W4313413760 hasConceptScore W4313413760C41008148 @default.
- W4313413760 hasConceptScore W4313413760C52192207 @default.
- W4313413760 hasConceptScore W4313413760C78519656 @default.
- W4313413760 hasConceptScore W4313413760C88182573 @default.
- W4313413760 hasLocation W43134137601 @default.
- W4313413760 hasOpenAccess W4313413760 @default.
- W4313413760 hasPrimaryLocation W43134137601 @default.
- W4313413760 hasRelatedWork W1499696124 @default.
- W4313413760 hasRelatedWork W1834152730 @default.
- W4313413760 hasRelatedWork W2072746854 @default.
- W4313413760 hasRelatedWork W2099476937 @default.
- W4313413760 hasRelatedWork W2115354162 @default.
- W4313413760 hasRelatedWork W2126759552 @default.
- W4313413760 hasRelatedWork W2358069681 @default.
- W4313413760 hasRelatedWork W2555895951 @default.
- W4313413760 hasRelatedWork W2809701296 @default.
- W4313413760 hasRelatedWork W3116980177 @default.
- W4313413760 isParatext "false" @default.
- W4313413760 isRetracted "false" @default.
- W4313413760 workType "article" @default.