Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313415050> ?p ?o ?g. }
- W4313415050 endingPage "67" @default.
- W4313415050 startingPage "67" @default.
- W4313415050 abstract "Drug-target binding affinity (DTA) prediction is an essential step in drug discovery. Drug-target protein binding occurs at specific regions between the protein and drug, rather than the entire protein and drug. However, existing deep-learning DTA prediction methods do not consider the interactions between drug substructures and protein sub-sequences. This work proposes GraphATT-DTA, a DTA prediction model that constructs the essential regions for determining interaction affinity between compounds and proteins, modeled with an attention mechanism for interpretability. We make the model consider the local-to-global interactions with the attention mechanism between compound and protein. As a result, GraphATT-DTA shows an improved prediction of DTA performance and interpretability compared with state-of-the-art models. The model is trained and evaluated with the Davis dataset, the human kinase dataset; an external evaluation is achieved with the independently proposed human kinase dataset from the BindingDB dataset." @default.
- W4313415050 created "2023-01-06" @default.
- W4313415050 creator A5030104461 @default.
- W4313415050 creator A5043581759 @default.
- W4313415050 date "2022-12-27" @default.
- W4313415050 modified "2023-10-18" @default.
- W4313415050 title "GraphATT-DTA: Attention-Based Novel Representation of Interaction to Predict Drug-Target Binding Affinity" @default.
- W4313415050 cites W1988037271 @default.
- W4313415050 cites W1988212011 @default.
- W4313415050 cites W2060531713 @default.
- W4313415050 cites W2080642200 @default.
- W4313415050 cites W2086286404 @default.
- W4313415050 cites W2096864392 @default.
- W4313415050 cites W2100772783 @default.
- W4313415050 cites W2109991441 @default.
- W4313415050 cites W2166550586 @default.
- W4313415050 cites W2200017991 @default.
- W4313415050 cites W2592742128 @default.
- W4313415050 cites W2605952223 @default.
- W4313415050 cites W2744129621 @default.
- W4313415050 cites W2785947426 @default.
- W4313415050 cites W2808199968 @default.
- W4313415050 cites W2809216727 @default.
- W4313415050 cites W2889321024 @default.
- W4313415050 cites W2921473648 @default.
- W4313415050 cites W2937307539 @default.
- W4313415050 cites W2959938226 @default.
- W4313415050 cites W2966357564 @default.
- W4313415050 cites W3000043291 @default.
- W4313415050 cites W3004946973 @default.
- W4313415050 cites W3032123378 @default.
- W4313415050 cites W3096561213 @default.
- W4313415050 cites W3104508774 @default.
- W4313415050 cites W3152586663 @default.
- W4313415050 cites W3159276577 @default.
- W4313415050 cites W3177828909 @default.
- W4313415050 cites W3186179742 @default.
- W4313415050 cites W3202227570 @default.
- W4313415050 cites W3206585172 @default.
- W4313415050 cites W4200547951 @default.
- W4313415050 doi "https://doi.org/10.3390/biomedicines11010067" @default.
- W4313415050 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36672575" @default.
- W4313415050 hasPublicationYear "2022" @default.
- W4313415050 type Work @default.
- W4313415050 citedByCount "0" @default.
- W4313415050 crossrefType "journal-article" @default.
- W4313415050 hasAuthorship W4313415050A5030104461 @default.
- W4313415050 hasAuthorship W4313415050A5043581759 @default.
- W4313415050 hasBestOaLocation W43134150501 @default.
- W4313415050 hasConcept C104317684 @default.
- W4313415050 hasConcept C119857082 @default.
- W4313415050 hasConcept C121332964 @default.
- W4313415050 hasConcept C154945302 @default.
- W4313415050 hasConcept C17744445 @default.
- W4313415050 hasConcept C185592680 @default.
- W4313415050 hasConcept C186060115 @default.
- W4313415050 hasConcept C199539241 @default.
- W4313415050 hasConcept C2776359362 @default.
- W4313415050 hasConcept C2780035454 @default.
- W4313415050 hasConcept C2780430158 @default.
- W4313415050 hasConcept C2781067378 @default.
- W4313415050 hasConcept C2989108626 @default.
- W4313415050 hasConcept C41008148 @default.
- W4313415050 hasConcept C55493867 @default.
- W4313415050 hasConcept C62520636 @default.
- W4313415050 hasConcept C70721500 @default.
- W4313415050 hasConcept C74187038 @default.
- W4313415050 hasConcept C86803240 @default.
- W4313415050 hasConcept C89611455 @default.
- W4313415050 hasConcept C94625758 @default.
- W4313415050 hasConcept C98274493 @default.
- W4313415050 hasConceptScore W4313415050C104317684 @default.
- W4313415050 hasConceptScore W4313415050C119857082 @default.
- W4313415050 hasConceptScore W4313415050C121332964 @default.
- W4313415050 hasConceptScore W4313415050C154945302 @default.
- W4313415050 hasConceptScore W4313415050C17744445 @default.
- W4313415050 hasConceptScore W4313415050C185592680 @default.
- W4313415050 hasConceptScore W4313415050C186060115 @default.
- W4313415050 hasConceptScore W4313415050C199539241 @default.
- W4313415050 hasConceptScore W4313415050C2776359362 @default.
- W4313415050 hasConceptScore W4313415050C2780035454 @default.
- W4313415050 hasConceptScore W4313415050C2780430158 @default.
- W4313415050 hasConceptScore W4313415050C2781067378 @default.
- W4313415050 hasConceptScore W4313415050C2989108626 @default.
- W4313415050 hasConceptScore W4313415050C41008148 @default.
- W4313415050 hasConceptScore W4313415050C55493867 @default.
- W4313415050 hasConceptScore W4313415050C62520636 @default.
- W4313415050 hasConceptScore W4313415050C70721500 @default.
- W4313415050 hasConceptScore W4313415050C74187038 @default.
- W4313415050 hasConceptScore W4313415050C86803240 @default.
- W4313415050 hasConceptScore W4313415050C89611455 @default.
- W4313415050 hasConceptScore W4313415050C94625758 @default.
- W4313415050 hasConceptScore W4313415050C98274493 @default.
- W4313415050 hasFunder F4320322120 @default.
- W4313415050 hasIssue "1" @default.
- W4313415050 hasLocation W43134150501 @default.
- W4313415050 hasLocation W43134150502 @default.
- W4313415050 hasLocation W43134150503 @default.