Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313415067> ?p ?o ?g. }
- W4313415067 endingPage "89" @default.
- W4313415067 startingPage "89" @default.
- W4313415067 abstract "Early detection of breast cancer is an essential procedure to reduce the mortality rate among women. In this paper, a new AI-based computer-aided diagnosis (CAD) framework called ETECADx is proposed by fusing the benefits of both ensemble transfer learning of the convolutional neural networks as well as the self-attention mechanism of vision transformer encoder (ViT). The accurate and precious high-level deep features are generated via the backbone ensemble network, while the transformer encoder is used to diagnose the breast cancer probabilities in two approaches: Approach A (i.e., binary classification) and Approach B (i.e., multi-classification). To build the proposed CAD system, the benchmark public multi-class INbreast dataset is used. Meanwhile, private real breast cancer images are collected and annotated by expert radiologists to validate the prediction performance of the proposed ETECADx framework. The promising evaluation results are achieved using the INbreast mammograms with overall accuracies of 98.58% and 97.87% for the binary and multi-class approaches, respectively. Compared with the individual backbone networks, the proposed ensemble learning model improves the breast cancer prediction performance by 6.6% for binary and 4.6% for multi-class approaches. The proposed hybrid ETECADx shows further prediction improvement when the ViT-based ensemble backbone network is used by 8.1% and 6.2% for binary and multi-class diagnosis, respectively. For validation purposes using the real breast images, the proposed CAD system provides encouraging prediction accuracies of 97.16% for binary and 89.40% for multi-class approaches. The ETECADx has a capability to predict the breast lesions for a single mammogram in an average of 0.048 s. Such promising performance could be useful and helpful to assist the practical CAD framework applications providing a second supporting opinion of distinguishing various breast cancer malignancies." @default.
- W4313415067 created "2023-01-06" @default.
- W4313415067 creator A5002127666 @default.
- W4313415067 creator A5022092645 @default.
- W4313415067 creator A5052602457 @default.
- W4313415067 creator A5056178502 @default.
- W4313415067 creator A5068901793 @default.
- W4313415067 creator A5082945344 @default.
- W4313415067 date "2022-12-28" @default.
- W4313415067 modified "2023-09-27" @default.
- W4313415067 title "ETECADx: Ensemble Self-Attention Transformer Encoder for Breast Cancer Diagnosis Using Full-Field Digital X-ray Breast Images" @default.
- W4313415067 cites W2002260093 @default.
- W4313415067 cites W2097117768 @default.
- W4313415067 cites W2493683088 @default.
- W4313415067 cites W2531409750 @default.
- W4313415067 cites W2759356748 @default.
- W4313415067 cites W2793956967 @default.
- W4313415067 cites W2809504579 @default.
- W4313415067 cites W2945819472 @default.
- W4313415067 cites W2954665897 @default.
- W4313415067 cites W2956569383 @default.
- W4313415067 cites W2963594535 @default.
- W4313415067 cites W2964350391 @default.
- W4313415067 cites W2970602317 @default.
- W4313415067 cites W2984906359 @default.
- W4313415067 cites W2987668033 @default.
- W4313415067 cites W2993303538 @default.
- W4313415067 cites W2996123227 @default.
- W4313415067 cites W3002592716 @default.
- W4313415067 cites W3005036364 @default.
- W4313415067 cites W3013980870 @default.
- W4313415067 cites W3033750579 @default.
- W4313415067 cites W3040660552 @default.
- W4313415067 cites W304373761 @default.
- W4313415067 cites W3092604081 @default.
- W4313415067 cites W3096265120 @default.
- W4313415067 cites W3110602624 @default.
- W4313415067 cites W3120678054 @default.
- W4313415067 cites W3126634865 @default.
- W4313415067 cites W3128646645 @default.
- W4313415067 cites W3131457744 @default.
- W4313415067 cites W3162418282 @default.
- W4313415067 cites W3166273700 @default.
- W4313415067 cites W3171873561 @default.
- W4313415067 cites W3195267815 @default.
- W4313415067 cites W3200035967 @default.
- W4313415067 cites W3204894386 @default.
- W4313415067 cites W4200051340 @default.
- W4313415067 cites W4206687052 @default.
- W4313415067 cites W4206998354 @default.
- W4313415067 cites W4210395586 @default.
- W4313415067 cites W4210499118 @default.
- W4313415067 cites W4213019189 @default.
- W4313415067 cites W4226517154 @default.
- W4313415067 cites W4280510832 @default.
- W4313415067 cites W4283316516 @default.
- W4313415067 cites W4283742965 @default.
- W4313415067 cites W4283746543 @default.
- W4313415067 cites W4286437542 @default.
- W4313415067 cites W4286470556 @default.
- W4313415067 cites W4286698131 @default.
- W4313415067 cites W4288432579 @default.
- W4313415067 cites W4294189863 @default.
- W4313415067 cites W4294975187 @default.
- W4313415067 cites W4295025118 @default.
- W4313415067 cites W4296432997 @default.
- W4313415067 cites W4297339085 @default.
- W4313415067 cites W4303856621 @default.
- W4313415067 cites W4304890358 @default.
- W4313415067 cites W4308333450 @default.
- W4313415067 cites W4309269102 @default.
- W4313415067 cites W4309457179 @default.
- W4313415067 doi "https://doi.org/10.3390/diagnostics13010089" @default.
- W4313415067 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36611382" @default.
- W4313415067 hasPublicationYear "2022" @default.
- W4313415067 type Work @default.
- W4313415067 citedByCount "6" @default.
- W4313415067 countsByYear W43134150672023 @default.
- W4313415067 crossrefType "journal-article" @default.
- W4313415067 hasAuthorship W4313415067A5002127666 @default.
- W4313415067 hasAuthorship W4313415067A5022092645 @default.
- W4313415067 hasAuthorship W4313415067A5052602457 @default.
- W4313415067 hasAuthorship W4313415067A5056178502 @default.
- W4313415067 hasAuthorship W4313415067A5068901793 @default.
- W4313415067 hasAuthorship W4313415067A5082945344 @default.
- W4313415067 hasBestOaLocation W43134150671 @default.
- W4313415067 hasConcept C108583219 @default.
- W4313415067 hasConcept C111919701 @default.
- W4313415067 hasConcept C118505674 @default.
- W4313415067 hasConcept C119857082 @default.
- W4313415067 hasConcept C121332964 @default.
- W4313415067 hasConcept C121608353 @default.
- W4313415067 hasConcept C12267149 @default.
- W4313415067 hasConcept C126322002 @default.
- W4313415067 hasConcept C127413603 @default.
- W4313415067 hasConcept C13280743 @default.
- W4313415067 hasConcept C150899416 @default.
- W4313415067 hasConcept C153180895 @default.