Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313419317> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4313419317 abstract "Coffee is one of the main products of Brazilian agriculture and the country is currently the largest producer and exporter in the world. The coffee fruit has a double sigmoidal growth pattern, however, as well as in other fruits that also show such a growth pattern, the authors generally do not estimate parameters of regression models to describe such curve. In the study of fruit growth curves, the sample size is generally small, so the estimation of the parameters should preferably be done by the Bayesian methodology, since a priori information is incorporated, reducing the effects of having few observations. The Markov Chain Monte Carlo algorithms are the most used computational tool in Bayesian statistics. However, these generate dependent samples, can be complicated to implement and, mainly, to teach. There are also other alternatives to the MCMC algorithms to obtain approximations of integrals of interest in Bayesian inference, the main ones are based on the importance resampling techniques. The objective of this work is to use Bayesian inference with the weighted importance resampling technique in the estimation of parameters of double sigmoidal nonlinear regression models to the description of coffee fruit growth. The double nonlinear logistic model was used in the description of the accumulation of fresh weight in coffee fruits. All prioris used have Beta distribution and were obtained by the called prior of specialist technique. Bayesian methodology was efficient, since it provided parameters with practical interpretation to coffee fruit growth, consistent with the reality. Thus, Bayesian inference by weighted importance resampling was a good alternative for the parameters estimation of nonlinear double sigmoid regression models. The logistic model showed that the growth of coffee fruits is more intense in the first sigmoid (until 162 DAF)of the growth curve and stabilizes in its final weight after 262 daf." @default.
- W4313419317 created "2023-01-06" @default.
- W4313419317 creator A5032931961 @default.
- W4313419317 creator A5035126604 @default.
- W4313419317 creator A5051627023 @default.
- W4313419317 creator A5064679763 @default.
- W4313419317 date "2022-12-31" @default.
- W4313419317 modified "2023-10-04" @default.
- W4313419317 title "Bayesian estimation of nonlinear models parameters in the description of growth coffee fruits" @default.
- W4313419317 doi "https://doi.org/10.28951/bjb.v40i4.623" @default.
- W4313419317 hasPublicationYear "2022" @default.
- W4313419317 type Work @default.
- W4313419317 citedByCount "0" @default.
- W4313419317 crossrefType "journal-article" @default.
- W4313419317 hasAuthorship W4313419317A5032931961 @default.
- W4313419317 hasAuthorship W4313419317A5035126604 @default.
- W4313419317 hasAuthorship W4313419317A5051627023 @default.
- W4313419317 hasAuthorship W4313419317A5064679763 @default.
- W4313419317 hasBestOaLocation W43134193171 @default.
- W4313419317 hasConcept C101112237 @default.
- W4313419317 hasConcept C105795698 @default.
- W4313419317 hasConcept C107673813 @default.
- W4313419317 hasConcept C111350023 @default.
- W4313419317 hasConcept C11413529 @default.
- W4313419317 hasConcept C149569020 @default.
- W4313419317 hasConcept C149782125 @default.
- W4313419317 hasConcept C150921843 @default.
- W4313419317 hasConcept C154945302 @default.
- W4313419317 hasConcept C160234255 @default.
- W4313419317 hasConcept C2776214188 @default.
- W4313419317 hasConcept C33923547 @default.
- W4313419317 hasConcept C41008148 @default.
- W4313419317 hasConceptScore W4313419317C101112237 @default.
- W4313419317 hasConceptScore W4313419317C105795698 @default.
- W4313419317 hasConceptScore W4313419317C107673813 @default.
- W4313419317 hasConceptScore W4313419317C111350023 @default.
- W4313419317 hasConceptScore W4313419317C11413529 @default.
- W4313419317 hasConceptScore W4313419317C149569020 @default.
- W4313419317 hasConceptScore W4313419317C149782125 @default.
- W4313419317 hasConceptScore W4313419317C150921843 @default.
- W4313419317 hasConceptScore W4313419317C154945302 @default.
- W4313419317 hasConceptScore W4313419317C160234255 @default.
- W4313419317 hasConceptScore W4313419317C2776214188 @default.
- W4313419317 hasConceptScore W4313419317C33923547 @default.
- W4313419317 hasConceptScore W4313419317C41008148 @default.
- W4313419317 hasIssue "4" @default.
- W4313419317 hasLocation W43134193171 @default.
- W4313419317 hasOpenAccess W4313419317 @default.
- W4313419317 hasPrimaryLocation W43134193171 @default.
- W4313419317 hasRelatedWork W2092296771 @default.
- W4313419317 hasRelatedWork W2464065341 @default.
- W4313419317 hasRelatedWork W2739886334 @default.
- W4313419317 hasRelatedWork W2753218748 @default.
- W4313419317 hasRelatedWork W2951176680 @default.
- W4313419317 hasRelatedWork W4205763938 @default.
- W4313419317 hasRelatedWork W4235165088 @default.
- W4313419317 hasRelatedWork W4300815303 @default.
- W4313419317 hasRelatedWork W4313419317 @default.
- W4313419317 hasRelatedWork W56528427 @default.
- W4313419317 hasVolume "40" @default.
- W4313419317 isParatext "false" @default.
- W4313419317 isRetracted "false" @default.
- W4313419317 workType "article" @default.