Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313420271> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4313420271 endingPage "119381" @default.
- W4313420271 startingPage "119381" @default.
- W4313420271 abstract "Early diagnosis can significantly improve the survival rate of lung cancer patients. This study attempts to construct a causal structure network between the computational and semantic features of lung nodules through causal discovery algorithms, and to detect and prevent lung nodules based on this network. For complex and diverse lung nodule data sets, this paper proposes a new causal lung nodule detection algorithm Tau-CSFS in combination with rank correlation methods. The algorithm can effectively mine the causal relationship among lung cancer data that obey the non-linear non-Gaussian distribution, and the mixture of continuous and discrete variables, and has good predictive performance. We made three main contributions. First, we proved that the Kendall rank correlation coefficient that does not require data distribution can be used as a standard for independence test. Second, we applied Kendall rank correlation to Bayesian structure learning, and proposed a new causal discovery algorithm: Tau-CS algorithm based on hypothesis testing. The third contribution is to combine the Tau-CS algorithm with the feature selection method, and further propose the Tau-CSFS algorithm, which solves the problem of causality mining and diagnosis detection of lung nodule data. In the experiment, the Tau-CS algorithm is compared with the prior art on 7 Bayesian networks on the additive noise structure model, and it is proved that the algorithm has a better accuracy of causal structure learning. Finally, in the lung nodule detection stage, using the processed LIDC data set to perform two-classification and multi-classification experiments on seven semantic categories, the average accuracy of the Tau-CSFS algorithm reached 85.84% and 83.32%. The Tau-CSFS algorithm are better than comparable similar algorithms in the comprehensive performance index. The results show that the proposed algorithm has good detection performance and wide application prospects." @default.
- W4313420271 created "2023-01-06" @default.
- W4313420271 creator A5004238013 @default.
- W4313420271 creator A5021421905 @default.
- W4313420271 creator A5057674713 @default.
- W4313420271 creator A5069888602 @default.
- W4313420271 creator A5075949909 @default.
- W4313420271 date "2023-04-01" @default.
- W4313420271 modified "2023-10-14" @default.
- W4313420271 title "Lung nodule detection algorithm based on rank correlation causal structure learning" @default.
- W4313420271 cites W1968009201 @default.
- W4313420271 cites W1971076990 @default.
- W4313420271 cites W1974122280 @default.
- W4313420271 cites W1986649315 @default.
- W4313420271 cites W2017337590 @default.
- W4313420271 cites W2029915151 @default.
- W4313420271 cites W2043505250 @default.
- W4313420271 cites W2080882283 @default.
- W4313420271 cites W2121591402 @default.
- W4313420271 cites W2134975236 @default.
- W4313420271 cites W2139406620 @default.
- W4313420271 cites W2165190832 @default.
- W4313420271 cites W2417727035 @default.
- W4313420271 cites W2553191729 @default.
- W4313420271 cites W2800589168 @default.
- W4313420271 cites W284344164 @default.
- W4313420271 cites W2911903711 @default.
- W4313420271 cites W3004516760 @default.
- W4313420271 cites W3004837672 @default.
- W4313420271 cites W3020913839 @default.
- W4313420271 cites W3084996758 @default.
- W4313420271 cites W4236354166 @default.
- W4313420271 doi "https://doi.org/10.1016/j.eswa.2022.119381" @default.
- W4313420271 hasPublicationYear "2023" @default.
- W4313420271 type Work @default.
- W4313420271 citedByCount "1" @default.
- W4313420271 crossrefType "journal-article" @default.
- W4313420271 hasAuthorship W4313420271A5004238013 @default.
- W4313420271 hasAuthorship W4313420271A5021421905 @default.
- W4313420271 hasAuthorship W4313420271A5057674713 @default.
- W4313420271 hasAuthorship W4313420271A5069888602 @default.
- W4313420271 hasAuthorship W4313420271A5075949909 @default.
- W4313420271 hasConcept C11413529 @default.
- W4313420271 hasConcept C114614502 @default.
- W4313420271 hasConcept C117220453 @default.
- W4313420271 hasConcept C119857082 @default.
- W4313420271 hasConcept C153180895 @default.
- W4313420271 hasConcept C154945302 @default.
- W4313420271 hasConcept C164226766 @default.
- W4313420271 hasConcept C2524010 @default.
- W4313420271 hasConcept C33724603 @default.
- W4313420271 hasConcept C33923547 @default.
- W4313420271 hasConcept C41008148 @default.
- W4313420271 hasConceptScore W4313420271C11413529 @default.
- W4313420271 hasConceptScore W4313420271C114614502 @default.
- W4313420271 hasConceptScore W4313420271C117220453 @default.
- W4313420271 hasConceptScore W4313420271C119857082 @default.
- W4313420271 hasConceptScore W4313420271C153180895 @default.
- W4313420271 hasConceptScore W4313420271C154945302 @default.
- W4313420271 hasConceptScore W4313420271C164226766 @default.
- W4313420271 hasConceptScore W4313420271C2524010 @default.
- W4313420271 hasConceptScore W4313420271C33724603 @default.
- W4313420271 hasConceptScore W4313420271C33923547 @default.
- W4313420271 hasConceptScore W4313420271C41008148 @default.
- W4313420271 hasFunder F4320321001 @default.
- W4313420271 hasFunder F4320337111 @default.
- W4313420271 hasLocation W43134202711 @default.
- W4313420271 hasOpenAccess W4313420271 @default.
- W4313420271 hasPrimaryLocation W43134202711 @default.
- W4313420271 hasRelatedWork W1696545756 @default.
- W4313420271 hasRelatedWork W2036588957 @default.
- W4313420271 hasRelatedWork W2097495471 @default.
- W4313420271 hasRelatedWork W2112835755 @default.
- W4313420271 hasRelatedWork W2152992791 @default.
- W4313420271 hasRelatedWork W2349674371 @default.
- W4313420271 hasRelatedWork W2952827811 @default.
- W4313420271 hasRelatedWork W2963262648 @default.
- W4313420271 hasRelatedWork W4291951920 @default.
- W4313420271 hasRelatedWork W4301867002 @default.
- W4313420271 hasVolume "216" @default.
- W4313420271 isParatext "false" @default.
- W4313420271 isRetracted "false" @default.
- W4313420271 workType "article" @default.