Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313420312> ?p ?o ?g. }
- W4313420312 endingPage "101969" @default.
- W4313420312 startingPage "101969" @default.
- W4313420312 abstract "Spatiotemporal changes in land surface temperature (LST) over South Asia were estimated using MODIS (moderate resolution imaging spectroradiometer) data from 2000 to 2021. We calculated the monthly and annual LST trends and magnitudes by applying the Mann–Kendall test and Sen's slope estimator at both ecoregion and pixel level. More ecoregions experienced daytime cooling than warming. Central and west South Asia showed the highest daytime cooling in December compared to the nighttime warming in the central and northwest in July and September. Nineteen ecoregions demonstrated monthly daytime cooling trends at the 99% confidence level (CL), with the highest record observed in ecoregion ‘Indus Valley desert’ in March with the magnitudes of −0.26 °C/yr. While the monthly and annual nighttime warming magnitude was the maximum in ‘Gissaro-Alai open woodlands’ in December (0.19 °C/yr at 95% CL), and ‘Indus River Delta-Arabian Sea mangroves’ at annual scale (0.06 °C/yr at 99% CL). To understand the influence of large-scale atmospheric oscillations on the trends, we also correlated the estimated LST trends with the selected oscillation indices. Sea surface temperature (SST) Niño 3.4 showed the most significant influence on the trends, where it was positively correlated with 38 ecoregions during nighttime over the year. A better understanding of temperature trends and impacts on South Asia would guide sustainable development and ensures the excessive demands on food, water, and energy supplies coping with the growing population." @default.
- W4313420312 created "2023-01-06" @default.
- W4313420312 creator A5017817815 @default.
- W4313420312 creator A5027727027 @default.
- W4313420312 creator A5045140098 @default.
- W4313420312 creator A5054736537 @default.
- W4313420312 creator A5064791885 @default.
- W4313420312 creator A5078017597 @default.
- W4313420312 creator A5088152786 @default.
- W4313420312 date "2023-05-01" @default.
- W4313420312 modified "2023-09-30" @default.
- W4313420312 title "Remote sensing-derived land surface temperature trends over South Asia" @default.
- W4313420312 cites W1982518595 @default.
- W4313420312 cites W1998196570 @default.
- W4313420312 cites W2018764772 @default.
- W4313420312 cites W2029422432 @default.
- W4313420312 cites W2029604816 @default.
- W4313420312 cites W2033625876 @default.
- W4313420312 cites W2034781010 @default.
- W4313420312 cites W2050663692 @default.
- W4313420312 cites W2052321356 @default.
- W4313420312 cites W2057408875 @default.
- W4313420312 cites W2066352445 @default.
- W4313420312 cites W2067618550 @default.
- W4313420312 cites W2071089923 @default.
- W4313420312 cites W2084299681 @default.
- W4313420312 cites W2095867549 @default.
- W4313420312 cites W2109495054 @default.
- W4313420312 cites W2136674707 @default.
- W4313420312 cites W2154596931 @default.
- W4313420312 cites W2161462911 @default.
- W4313420312 cites W2175960157 @default.
- W4313420312 cites W2202077340 @default.
- W4313420312 cites W2287935294 @default.
- W4313420312 cites W2318680928 @default.
- W4313420312 cites W2416558612 @default.
- W4313420312 cites W2552111867 @default.
- W4313420312 cites W2567734730 @default.
- W4313420312 cites W2579586614 @default.
- W4313420312 cites W2605932719 @default.
- W4313420312 cites W2616483903 @default.
- W4313420312 cites W2617881199 @default.
- W4313420312 cites W2739782441 @default.
- W4313420312 cites W2765110247 @default.
- W4313420312 cites W2789577052 @default.
- W4313420312 cites W2793350103 @default.
- W4313420312 cites W2886859424 @default.
- W4313420312 cites W2893125974 @default.
- W4313420312 cites W2908653200 @default.
- W4313420312 cites W2909974283 @default.
- W4313420312 cites W2947166367 @default.
- W4313420312 cites W2972312312 @default.
- W4313420312 cites W2980904185 @default.
- W4313420312 cites W2980959942 @default.
- W4313420312 cites W2990431184 @default.
- W4313420312 cites W2995456819 @default.
- W4313420312 cites W3001737992 @default.
- W4313420312 cites W3001949784 @default.
- W4313420312 cites W3003434013 @default.
- W4313420312 cites W3004439910 @default.
- W4313420312 cites W3010408219 @default.
- W4313420312 cites W3037114145 @default.
- W4313420312 cites W3112989424 @default.
- W4313420312 cites W3113484207 @default.
- W4313420312 cites W3127199302 @default.
- W4313420312 cites W3153297155 @default.
- W4313420312 cites W3157171530 @default.
- W4313420312 cites W3157684151 @default.
- W4313420312 cites W3164992711 @default.
- W4313420312 cites W3169352175 @default.
- W4313420312 cites W3192350108 @default.
- W4313420312 cites W3194159696 @default.
- W4313420312 cites W3197447577 @default.
- W4313420312 cites W3198500275 @default.
- W4313420312 cites W3211435903 @default.
- W4313420312 cites W4205140205 @default.
- W4313420312 cites W4206327891 @default.
- W4313420312 cites W4220655278 @default.
- W4313420312 cites W4225106809 @default.
- W4313420312 doi "https://doi.org/10.1016/j.ecoinf.2022.101969" @default.
- W4313420312 hasPublicationYear "2023" @default.
- W4313420312 type Work @default.
- W4313420312 citedByCount "9" @default.
- W4313420312 countsByYear W43134203122023 @default.
- W4313420312 crossrefType "journal-article" @default.
- W4313420312 hasAuthorship W4313420312A5017817815 @default.
- W4313420312 hasAuthorship W4313420312A5027727027 @default.
- W4313420312 hasAuthorship W4313420312A5045140098 @default.
- W4313420312 hasAuthorship W4313420312A5054736537 @default.
- W4313420312 hasAuthorship W4313420312A5064791885 @default.
- W4313420312 hasAuthorship W4313420312A5078017597 @default.
- W4313420312 hasAuthorship W4313420312A5088152786 @default.
- W4313420312 hasBestOaLocation W43134203121 @default.
- W4313420312 hasConcept C100970517 @default.
- W4313420312 hasConcept C111368507 @default.
- W4313420312 hasConcept C115343472 @default.
- W4313420312 hasConcept C127313418 @default.
- W4313420312 hasConcept C127413603 @default.