Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313420563> ?p ?o ?g. }
- W4313420563 endingPage "102168" @default.
- W4313420563 startingPage "102168" @default.
- W4313420563 abstract "The Right Ventricle (RV) is currently recognised to be a significant and important prognostic factor for various pathologies. Its assessment is made possible using Magnetic Resonance Imaging (CMRI) short-axis slices. Yet, due to the challenging issues of this cavity, radiologists still perform its delineation manually, which is tedious, laborious, and time-consuming. Therefore, to automatically tackle the RV segmentation issues, Deep-Learning (DL) techniques seem to be the axis of the most recent promising approaches. Along with its potential at dealing with shape variations, DL techniques highly requires a large number of labelled images to avoid over-fitting. Subsequently, with the produced large amounts of data in the medical industry, preparing annotated datasets manually is still time-consuming, and requires high skills to be accomplished. To benefit from a significant number of labelled and unlabelled CMRI images, a Deep-Active-Learning (DAL) approach is proposed in this paper to segment the RV. Thus, three main steps are distinguished. First, a personalised labelled dataset is gathered and augmented to allow initial learning. Secondly, a U-Net based architecture is modified towards efficient initial accuracy. Finally, a two-level uncertainty estimation technique is settled to enable the selection of complementary unlabelled data. The proposed pipeline is enhanced with a customised postprocessing step, in which epistemic uncertainty and Dense Conditional Random Fields are used. The proposed approach is tested on 791 images gathered from 32 public patients and 1230 images of 50 custom subjects. The obtained results show an increased dice coefficient from 0.86 to 0.91 with a decreased Hausdorff distance from 7.55 to 7.45." @default.
- W4313420563 created "2023-01-06" @default.
- W4313420563 creator A5002464906 @default.
- W4313420563 creator A5025544894 @default.
- W4313420563 creator A5049947233 @default.
- W4313420563 creator A5067525029 @default.
- W4313420563 date "2023-03-01" @default.
- W4313420563 modified "2023-10-18" @default.
- W4313420563 title "Deep-active-learning approach towards accurate right ventricular segmentation using a two-level uncertainty estimation" @default.
- W4313420563 cites W1515759115 @default.
- W4313420563 cites W1901129140 @default.
- W4313420563 cites W1958968158 @default.
- W4313420563 cites W1978633512 @default.
- W4313420563 cites W2005947232 @default.
- W4313420563 cites W2049554108 @default.
- W4313420563 cites W2051009225 @default.
- W4313420563 cites W2057441779 @default.
- W4313420563 cites W2059784307 @default.
- W4313420563 cites W2117478708 @default.
- W4313420563 cites W2155137238 @default.
- W4313420563 cites W2587914376 @default.
- W4313420563 cites W2588773529 @default.
- W4313420563 cites W2592024705 @default.
- W4313420563 cites W2593219532 @default.
- W4313420563 cites W2744969164 @default.
- W4313420563 cites W2798820905 @default.
- W4313420563 cites W2891759811 @default.
- W4313420563 cites W2900753655 @default.
- W4313420563 cites W2954996726 @default.
- W4313420563 cites W2956630538 @default.
- W4313420563 cites W2963351448 @default.
- W4313420563 cites W2963395421 @default.
- W4313420563 cites W2963978428 @default.
- W4313420563 cites W2964212292 @default.
- W4313420563 cites W2977942577 @default.
- W4313420563 cites W2980058640 @default.
- W4313420563 cites W2996016140 @default.
- W4313420563 cites W3008973362 @default.
- W4313420563 cites W3011743383 @default.
- W4313420563 cites W3012478585 @default.
- W4313420563 cites W3014451531 @default.
- W4313420563 cites W3046605870 @default.
- W4313420563 cites W3047822139 @default.
- W4313420563 cites W3102474308 @default.
- W4313420563 cites W3107886162 @default.
- W4313420563 cites W3112139896 @default.
- W4313420563 cites W3117626355 @default.
- W4313420563 cites W3136149399 @default.
- W4313420563 cites W4280595435 @default.
- W4313420563 cites W4289887258 @default.
- W4313420563 doi "https://doi.org/10.1016/j.compmedimag.2022.102168" @default.
- W4313420563 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36640486" @default.
- W4313420563 hasPublicationYear "2023" @default.
- W4313420563 type Work @default.
- W4313420563 citedByCount "0" @default.
- W4313420563 crossrefType "journal-article" @default.
- W4313420563 hasAuthorship W4313420563A5002464906 @default.
- W4313420563 hasAuthorship W4313420563A5025544894 @default.
- W4313420563 hasAuthorship W4313420563A5049947233 @default.
- W4313420563 hasAuthorship W4313420563A5067525029 @default.
- W4313420563 hasConcept C105795698 @default.
- W4313420563 hasConcept C108583219 @default.
- W4313420563 hasConcept C119857082 @default.
- W4313420563 hasConcept C124504099 @default.
- W4313420563 hasConcept C153180895 @default.
- W4313420563 hasConcept C154945302 @default.
- W4313420563 hasConcept C163892561 @default.
- W4313420563 hasConcept C199360897 @default.
- W4313420563 hasConcept C22029948 @default.
- W4313420563 hasConcept C33923547 @default.
- W4313420563 hasConcept C41008148 @default.
- W4313420563 hasConcept C43521106 @default.
- W4313420563 hasConcept C89600930 @default.
- W4313420563 hasConceptScore W4313420563C105795698 @default.
- W4313420563 hasConceptScore W4313420563C108583219 @default.
- W4313420563 hasConceptScore W4313420563C119857082 @default.
- W4313420563 hasConceptScore W4313420563C124504099 @default.
- W4313420563 hasConceptScore W4313420563C153180895 @default.
- W4313420563 hasConceptScore W4313420563C154945302 @default.
- W4313420563 hasConceptScore W4313420563C163892561 @default.
- W4313420563 hasConceptScore W4313420563C199360897 @default.
- W4313420563 hasConceptScore W4313420563C22029948 @default.
- W4313420563 hasConceptScore W4313420563C33923547 @default.
- W4313420563 hasConceptScore W4313420563C41008148 @default.
- W4313420563 hasConceptScore W4313420563C43521106 @default.
- W4313420563 hasConceptScore W4313420563C89600930 @default.
- W4313420563 hasLocation W43134205631 @default.
- W4313420563 hasLocation W43134205632 @default.
- W4313420563 hasOpenAccess W4313420563 @default.
- W4313420563 hasPrimaryLocation W43134205631 @default.
- W4313420563 hasRelatedWork W2630229246 @default.
- W4313420563 hasRelatedWork W2948658236 @default.
- W4313420563 hasRelatedWork W2960184797 @default.
- W4313420563 hasRelatedWork W2972093541 @default.
- W4313420563 hasRelatedWork W2999580839 @default.
- W4313420563 hasRelatedWork W3115553566 @default.
- W4313420563 hasRelatedWork W3135174555 @default.
- W4313420563 hasRelatedWork W3152950745 @default.