Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313420912> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4313420912 endingPage "104515" @default.
- W4313420912 startingPage "104515" @default.
- W4313420912 abstract "Concise segmentation of medical images is vital for diagnosing and treating diseases. In recent years, convolutional neural networks (CNNs) have yielded satisfactory results in the field of medical image segmentation, and researchers are striving to improve the segmentation performance of CNNs by using the channel attention mechanism. However, most existing channel attention modules have numerous parameters and use a single compression and activation function in the process of attention realization. This limits the effect of attention promotion. To solve this problem, in this paper, we propose the triplet attention fusion (TAF) module. It combines direct and indirect mapping to achieve effective fusion of global-local information. In addition, this method has low computational complexity. Because of its lightweight and convenient advantages, the TAF module can be integrated into the existing semantic segmentation networks. The experimental results on ISIC-2018 and LiTS datasets show that TAF can greatly improve the performance of the network. Compared with other attention modules, it introduces fewer parameters. In addition, the performance of UNet with TAF module is close to or even surpasses that of the other state-of-the-art network models. It proves the superiority and effectiveness of our proposed module in medical image segmentation." @default.
- W4313420912 created "2023-01-06" @default.
- W4313420912 creator A5010727345 @default.
- W4313420912 creator A5027999549 @default.
- W4313420912 creator A5060246595 @default.
- W4313420912 creator A5072849622 @default.
- W4313420912 creator A5078200798 @default.
- W4313420912 date "2023-04-01" @default.
- W4313420912 modified "2023-09-24" @default.
- W4313420912 title "Triplet attention fusion module: A concise and efficient channel attention module for medical image segmentation" @default.
- W4313420912 cites W2531409750 @default.
- W4313420912 cites W2752782242 @default.
- W4313420912 cites W2774320778 @default.
- W4313420912 cites W2884585870 @default.
- W4313420912 cites W2905338897 @default.
- W4313420912 cites W2922509574 @default.
- W4313420912 cites W2955058313 @default.
- W4313420912 cites W3015788359 @default.
- W4313420912 cites W3034552520 @default.
- W4313420912 cites W3090920939 @default.
- W4313420912 cites W3092344722 @default.
- W4313420912 cites W3093049763 @default.
- W4313420912 cites W3096812112 @default.
- W4313420912 cites W3103010481 @default.
- W4313420912 cites W3119205652 @default.
- W4313420912 cites W3148874463 @default.
- W4313420912 cites W3153148133 @default.
- W4313420912 cites W3160038630 @default.
- W4313420912 cites W3162418282 @default.
- W4313420912 cites W3177052299 @default.
- W4313420912 cites W4220863108 @default.
- W4313420912 cites W4253042563 @default.
- W4313420912 cites W4285604868 @default.
- W4313420912 cites W4302275239 @default.
- W4313420912 doi "https://doi.org/10.1016/j.bspc.2022.104515" @default.
- W4313420912 hasPublicationYear "2023" @default.
- W4313420912 type Work @default.
- W4313420912 citedByCount "1" @default.
- W4313420912 countsByYear W43134209122023 @default.
- W4313420912 crossrefType "journal-article" @default.
- W4313420912 hasAuthorship W4313420912A5010727345 @default.
- W4313420912 hasAuthorship W4313420912A5027999549 @default.
- W4313420912 hasAuthorship W4313420912A5060246595 @default.
- W4313420912 hasAuthorship W4313420912A5072849622 @default.
- W4313420912 hasAuthorship W4313420912A5078200798 @default.
- W4313420912 hasConcept C105795698 @default.
- W4313420912 hasConcept C111919701 @default.
- W4313420912 hasConcept C115961682 @default.
- W4313420912 hasConcept C127162648 @default.
- W4313420912 hasConcept C153180895 @default.
- W4313420912 hasConcept C154945302 @default.
- W4313420912 hasConcept C202444582 @default.
- W4313420912 hasConcept C2781089630 @default.
- W4313420912 hasConcept C31258907 @default.
- W4313420912 hasConcept C33923547 @default.
- W4313420912 hasConcept C41008148 @default.
- W4313420912 hasConcept C81363708 @default.
- W4313420912 hasConcept C89600930 @default.
- W4313420912 hasConcept C9652623 @default.
- W4313420912 hasConcept C98045186 @default.
- W4313420912 hasConceptScore W4313420912C105795698 @default.
- W4313420912 hasConceptScore W4313420912C111919701 @default.
- W4313420912 hasConceptScore W4313420912C115961682 @default.
- W4313420912 hasConceptScore W4313420912C127162648 @default.
- W4313420912 hasConceptScore W4313420912C153180895 @default.
- W4313420912 hasConceptScore W4313420912C154945302 @default.
- W4313420912 hasConceptScore W4313420912C202444582 @default.
- W4313420912 hasConceptScore W4313420912C2781089630 @default.
- W4313420912 hasConceptScore W4313420912C31258907 @default.
- W4313420912 hasConceptScore W4313420912C33923547 @default.
- W4313420912 hasConceptScore W4313420912C41008148 @default.
- W4313420912 hasConceptScore W4313420912C81363708 @default.
- W4313420912 hasConceptScore W4313420912C89600930 @default.
- W4313420912 hasConceptScore W4313420912C9652623 @default.
- W4313420912 hasConceptScore W4313420912C98045186 @default.
- W4313420912 hasLocation W43134209121 @default.
- W4313420912 hasOpenAccess W4313420912 @default.
- W4313420912 hasPrimaryLocation W43134209121 @default.
- W4313420912 hasRelatedWork W2175746458 @default.
- W4313420912 hasRelatedWork W2732542196 @default.
- W4313420912 hasRelatedWork W2760085659 @default.
- W4313420912 hasRelatedWork W2767651786 @default.
- W4313420912 hasRelatedWork W2769435486 @default.
- W4313420912 hasRelatedWork W3093612317 @default.
- W4313420912 hasRelatedWork W3102253946 @default.
- W4313420912 hasRelatedWork W4200528772 @default.
- W4313420912 hasRelatedWork W4293211451 @default.
- W4313420912 hasRelatedWork W4308191152 @default.
- W4313420912 hasVolume "82" @default.
- W4313420912 isParatext "false" @default.
- W4313420912 isRetracted "false" @default.
- W4313420912 workType "article" @default.