Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313426554> ?p ?o ?g. }
- W4313426554 endingPage "108166" @default.
- W4313426554 startingPage "108166" @default.
- W4313426554 abstract "The present study aims at predicting the maximum temperature in line contacts depending on operating conditions. For this purpose, a thermo-elastohydrodynamic lubrication (TEHL) simulation model of a line contact is used to calculate the maximum temperature for a wide range of parameters. Subsequently, a neural networks (NN) approach is used to develop a surrogate model that is able to predict the maximum temperature on the basis of the operational parameters. The influence of different NN architectures and transfer functions on the accuracy is shown. A good agreement with a correlation coefficient (R) greater than 0.997 is achieved for a NN with two hidden layers. Furthermore, the impact of feature engineering on the prediction accuracy with limited data sets is presented." @default.
- W4313426554 created "2023-01-06" @default.
- W4313426554 creator A5011784993 @default.
- W4313426554 creator A5021267608 @default.
- W4313426554 creator A5036474396 @default.
- W4313426554 creator A5078516288 @default.
- W4313426554 date "2023-01-01" @default.
- W4313426554 modified "2023-10-03" @default.
- W4313426554 title "Machine learning based surrogate modelling for the prediction of maximum contact temperature in EHL line contacts" @default.
- W4313426554 cites W1963576603 @default.
- W4313426554 cites W1987061944 @default.
- W4313426554 cites W1993043069 @default.
- W4313426554 cites W2010481347 @default.
- W4313426554 cites W2014117596 @default.
- W4313426554 cites W2036711029 @default.
- W4313426554 cites W2060850106 @default.
- W4313426554 cites W2123197870 @default.
- W4313426554 cites W2132226644 @default.
- W4313426554 cites W231933190 @default.
- W4313426554 cites W2341154484 @default.
- W4313426554 cites W2624715867 @default.
- W4313426554 cites W2734469648 @default.
- W4313426554 cites W2917707409 @default.
- W4313426554 cites W2983980070 @default.
- W4313426554 cites W3093776988 @default.
- W4313426554 cites W3108303865 @default.
- W4313426554 cites W3108914650 @default.
- W4313426554 cites W3113471983 @default.
- W4313426554 cites W3120518708 @default.
- W4313426554 cites W3196542145 @default.
- W4313426554 cites W3197982391 @default.
- W4313426554 cites W4205511145 @default.
- W4313426554 cites W4210680557 @default.
- W4313426554 cites W4220961691 @default.
- W4313426554 cites W4232767018 @default.
- W4313426554 cites W4281253260 @default.
- W4313426554 cites W4282599518 @default.
- W4313426554 cites W4288449827 @default.
- W4313426554 cites W4293676948 @default.
- W4313426554 cites W86112110 @default.
- W4313426554 cites W95783167 @default.
- W4313426554 doi "https://doi.org/10.1016/j.triboint.2022.108166" @default.
- W4313426554 hasPublicationYear "2023" @default.
- W4313426554 type Work @default.
- W4313426554 citedByCount "4" @default.
- W4313426554 countsByYear W43134265542023 @default.
- W4313426554 crossrefType "journal-article" @default.
- W4313426554 hasAuthorship W4313426554A5011784993 @default.
- W4313426554 hasAuthorship W4313426554A5021267608 @default.
- W4313426554 hasAuthorship W4313426554A5036474396 @default.
- W4313426554 hasAuthorship W4313426554A5078516288 @default.
- W4313426554 hasConcept C119599485 @default.
- W4313426554 hasConcept C119857082 @default.
- W4313426554 hasConcept C121332964 @default.
- W4313426554 hasConcept C127413603 @default.
- W4313426554 hasConcept C131321042 @default.
- W4313426554 hasConcept C154945302 @default.
- W4313426554 hasConcept C159985019 @default.
- W4313426554 hasConcept C184608416 @default.
- W4313426554 hasConcept C192562407 @default.
- W4313426554 hasConcept C198352243 @default.
- W4313426554 hasConcept C204323151 @default.
- W4313426554 hasConcept C2524010 @default.
- W4313426554 hasConcept C2780092901 @default.
- W4313426554 hasConcept C2985831756 @default.
- W4313426554 hasConcept C33923547 @default.
- W4313426554 hasConcept C39353612 @default.
- W4313426554 hasConcept C41008148 @default.
- W4313426554 hasConcept C50644808 @default.
- W4313426554 hasConcept C72293138 @default.
- W4313426554 hasConcept C97355855 @default.
- W4313426554 hasConceptScore W4313426554C119599485 @default.
- W4313426554 hasConceptScore W4313426554C119857082 @default.
- W4313426554 hasConceptScore W4313426554C121332964 @default.
- W4313426554 hasConceptScore W4313426554C127413603 @default.
- W4313426554 hasConceptScore W4313426554C131321042 @default.
- W4313426554 hasConceptScore W4313426554C154945302 @default.
- W4313426554 hasConceptScore W4313426554C159985019 @default.
- W4313426554 hasConceptScore W4313426554C184608416 @default.
- W4313426554 hasConceptScore W4313426554C192562407 @default.
- W4313426554 hasConceptScore W4313426554C198352243 @default.
- W4313426554 hasConceptScore W4313426554C204323151 @default.
- W4313426554 hasConceptScore W4313426554C2524010 @default.
- W4313426554 hasConceptScore W4313426554C2780092901 @default.
- W4313426554 hasConceptScore W4313426554C2985831756 @default.
- W4313426554 hasConceptScore W4313426554C33923547 @default.
- W4313426554 hasConceptScore W4313426554C39353612 @default.
- W4313426554 hasConceptScore W4313426554C41008148 @default.
- W4313426554 hasConceptScore W4313426554C50644808 @default.
- W4313426554 hasConceptScore W4313426554C72293138 @default.
- W4313426554 hasConceptScore W4313426554C97355855 @default.
- W4313426554 hasLocation W43134265541 @default.
- W4313426554 hasOpenAccess W4313426554 @default.
- W4313426554 hasPrimaryLocation W43134265541 @default.
- W4313426554 hasRelatedWork W1509684708 @default.
- W4313426554 hasRelatedWork W2033553977 @default.
- W4313426554 hasRelatedWork W2064077916 @default.
- W4313426554 hasRelatedWork W2074006616 @default.