Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313426587> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4313426587 abstract "Abstract Lung adenocarcinoma (LUAD) is one of the most common cancers, and patients’ prognostication is crucial for treatment decisions. Histopathological images are the most generally accessible clinical information, however they have not been employed in clinical settings for prognosis. In t his study, we used WSIs and clinical data from TCGA (training and testing) and East Asian Cohort (EAS, Validation) to develop and validate DL-based prognosticator. To circumvent the need for manual ROI generation, WSIs from these patients were divided into smaller patches and scored. DeepMPS prediction model was built using the top scoring 226,383 patches. The DeepMPS model showed a C-index of 0.638 in the TCGA training cohort. The univariate and multivariate cox regression analysis identified DeepMPS as an independent predictor of survival (HR: 9.48, p-value: <0.0001) in the training cohort. The training cohort of patients was separated into low and high-risk groups at various points. Kaplan-Meier analysis showed the highest difference in survival of low and high-risk patients at the 75th percentile (HR: 3.58, 95% CI: 2.57-5.00, p-value: <0.0001). At the same cut-off as the training samples, TCGA testing cohort patients demonstrated a significant difference in survival when split into low and high-risk patients (HR: 2.30, 95% CI: 1.11-4.82, p-value: 0.044). The DeepMPS model was validated in the EAS cohort patients. DeepMPS risk score significantly segregated EAS patients into low and high-risk groups at the same cut-off point as the training cohort (HR: 2.09, 95% CI: 1.11-3.97, p-value: 0.008). In multivariate Cox regression analysis, the DeepMPS score outperformed the stage in survival prediction. We also compared the DeepMPS model with the previously developed DL-based model to show that it was the best predictor of survival with the highest C-index. In conclusion, we developed a robust DL-based prognostic model which can predict the LUAD outcome without manual intervention using histopathological images. Author Summary Right from the initial step of cancer diagnosis, histopathological images are the widely relied source of information for therapeutic decision making. Though these images carry a substantial amount of information, their use remains restricted to determining the grade of the tumor by pathologists. The advent of computational techniques has given rise to the ability to capture vital information besides the grade of the tumor, which humans might not be able to quantify visually. To this end, this work proposes a deep learning based model, Deep Multi-Modal Prognosis System (DeepMPS), to predict the prognosis of the patients based on the histopathological images to provide additional information to the pathologist which will aid in clinical decision making. DeepMPS predicts a risk score associated with each individual based on histopathological images and clinical factors. The risk score obtained from the proposed system is an independent predictor of survival. As the proposed system is independent of the manual region-of-interest (RoI) generation, it will ease the pathologist’s workload." @default.
- W4313426587 created "2023-01-06" @default.
- W4313426587 creator A5010688736 @default.
- W4313426587 creator A5016687983 @default.
- W4313426587 creator A5020686510 @default.
- W4313426587 creator A5035758318 @default.
- W4313426587 creator A5038063967 @default.
- W4313426587 creator A5052055509 @default.
- W4313426587 date "2022-12-30" @default.
- W4313426587 modified "2023-09-27" @default.
- W4313426587 title "DeepMPS: Development and validation of a deep learning model for whole slide image base prognostic prediction of low grade Lung adenocarcinoma patients" @default.
- W4313426587 cites W2529340146 @default.
- W4313426587 cites W2563780449 @default.
- W4313426587 cites W2760946358 @default.
- W4313426587 cites W2795387833 @default.
- W4313426587 cites W2797883881 @default.
- W4313426587 cites W2885229054 @default.
- W4313426587 cites W2911831872 @default.
- W4313426587 cites W2952481429 @default.
- W4313426587 cites W2989743390 @default.
- W4313426587 cites W3004318979 @default.
- W4313426587 cites W3004868960 @default.
- W4313426587 cites W3009535750 @default.
- W4313426587 cites W3082078093 @default.
- W4313426587 cites W3100355572 @default.
- W4313426587 cites W3156579229 @default.
- W4313426587 cites W3169508433 @default.
- W4313426587 cites W3176777156 @default.
- W4313426587 cites W3204312334 @default.
- W4313426587 cites W3205605830 @default.
- W4313426587 cites W4206841660 @default.
- W4313426587 cites W4280533169 @default.
- W4313426587 cites W4282936867 @default.
- W4313426587 cites W4288809219 @default.
- W4313426587 doi "https://doi.org/10.1101/2022.12.27.522072" @default.
- W4313426587 hasPublicationYear "2022" @default.
- W4313426587 type Work @default.
- W4313426587 citedByCount "1" @default.
- W4313426587 countsByYear W43134265872023 @default.
- W4313426587 crossrefType "posted-content" @default.
- W4313426587 hasAuthorship W4313426587A5010688736 @default.
- W4313426587 hasAuthorship W4313426587A5016687983 @default.
- W4313426587 hasAuthorship W4313426587A5020686510 @default.
- W4313426587 hasAuthorship W4313426587A5035758318 @default.
- W4313426587 hasAuthorship W4313426587A5038063967 @default.
- W4313426587 hasAuthorship W4313426587A5052055509 @default.
- W4313426587 hasBestOaLocation W43134265871 @default.
- W4313426587 hasConcept C105795698 @default.
- W4313426587 hasConcept C119857082 @default.
- W4313426587 hasConcept C121608353 @default.
- W4313426587 hasConcept C122048520 @default.
- W4313426587 hasConcept C126322002 @default.
- W4313426587 hasConcept C143998085 @default.
- W4313426587 hasConcept C144301174 @default.
- W4313426587 hasConcept C161584116 @default.
- W4313426587 hasConcept C199163554 @default.
- W4313426587 hasConcept C2781182431 @default.
- W4313426587 hasConcept C33923547 @default.
- W4313426587 hasConcept C38180746 @default.
- W4313426587 hasConcept C41008148 @default.
- W4313426587 hasConcept C50382708 @default.
- W4313426587 hasConcept C71924100 @default.
- W4313426587 hasConcept C72563966 @default.
- W4313426587 hasConceptScore W4313426587C105795698 @default.
- W4313426587 hasConceptScore W4313426587C119857082 @default.
- W4313426587 hasConceptScore W4313426587C121608353 @default.
- W4313426587 hasConceptScore W4313426587C122048520 @default.
- W4313426587 hasConceptScore W4313426587C126322002 @default.
- W4313426587 hasConceptScore W4313426587C143998085 @default.
- W4313426587 hasConceptScore W4313426587C144301174 @default.
- W4313426587 hasConceptScore W4313426587C161584116 @default.
- W4313426587 hasConceptScore W4313426587C199163554 @default.
- W4313426587 hasConceptScore W4313426587C2781182431 @default.
- W4313426587 hasConceptScore W4313426587C33923547 @default.
- W4313426587 hasConceptScore W4313426587C38180746 @default.
- W4313426587 hasConceptScore W4313426587C41008148 @default.
- W4313426587 hasConceptScore W4313426587C50382708 @default.
- W4313426587 hasConceptScore W4313426587C71924100 @default.
- W4313426587 hasConceptScore W4313426587C72563966 @default.
- W4313426587 hasLocation W43134265871 @default.
- W4313426587 hasOpenAccess W4313426587 @default.
- W4313426587 hasPrimaryLocation W43134265871 @default.
- W4313426587 hasRelatedWork W1828158523 @default.
- W4313426587 hasRelatedWork W1976875473 @default.
- W4313426587 hasRelatedWork W1999135230 @default.
- W4313426587 hasRelatedWork W2082153206 @default.
- W4313426587 hasRelatedWork W2160813944 @default.
- W4313426587 hasRelatedWork W2361144647 @default.
- W4313426587 hasRelatedWork W2735331178 @default.
- W4313426587 hasRelatedWork W3146652434 @default.
- W4313426587 hasRelatedWork W4298064956 @default.
- W4313426587 hasRelatedWork W2143512957 @default.
- W4313426587 isParatext "false" @default.
- W4313426587 isRetracted "false" @default.
- W4313426587 workType "article" @default.