Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313427620> ?p ?o ?g. }
- W4313427620 endingPage "527" @default.
- W4313427620 startingPage "527" @default.
- W4313427620 abstract "The present study merges the teaching and learning algorithm (TLBO) and turbulent flow of water optimization (TFWO) to propose the hybrid TLTFWO. The main purpose is to provide optimal power flow (OPF) of the power network. To this end, the paper also incorporated photovoltaics (PV) and wind turbine (WT) generating units. The estimated output power of PVs/WTs and voltage magnitudes of PV/WT buses are included, respectively, as dependent and control (decision) variables in the mathematical expression of OPF. Real-time wind speed and irradiance measurements help estimate and predict the power generation by WT/PV units. An IEEE 30-bus system is also used to verify the accuracy and validity of the suggested OPF and the hybrid TLTFWO method. Moreover, a comparison is made between the suggested approach and the competing algorithms in solving the OPF problem to demonstrate the capability of the TLTFWO from robustness and efficiency perspectives." @default.
- W4313427620 created "2023-01-06" @default.
- W4313427620 creator A5013627840 @default.
- W4313427620 creator A5035193805 @default.
- W4313427620 creator A5035300094 @default.
- W4313427620 creator A5086406029 @default.
- W4313427620 date "2022-12-30" @default.
- W4313427620 modified "2023-10-01" @default.
- W4313427620 title "Power Flow Optimization by Integrating Novel Metaheuristic Algorithms and Adopting Renewables to Improve Power System Operation" @default.
- W4313427620 cites W1527696706 @default.
- W4313427620 cites W1765350388 @default.
- W4313427620 cites W1966054621 @default.
- W4313427620 cites W1969986885 @default.
- W4313427620 cites W1991138803 @default.
- W4313427620 cites W2000622935 @default.
- W4313427620 cites W2004039557 @default.
- W4313427620 cites W2030336736 @default.
- W4313427620 cites W2060697127 @default.
- W4313427620 cites W2066143374 @default.
- W4313427620 cites W2069989924 @default.
- W4313427620 cites W2079075480 @default.
- W4313427620 cites W2109242547 @default.
- W4313427620 cites W2122035735 @default.
- W4313427620 cites W2127989096 @default.
- W4313427620 cites W2128943520 @default.
- W4313427620 cites W2134172715 @default.
- W4313427620 cites W2134869843 @default.
- W4313427620 cites W2228745449 @default.
- W4313427620 cites W2267281840 @default.
- W4313427620 cites W2299619383 @default.
- W4313427620 cites W2510853569 @default.
- W4313427620 cites W2511569622 @default.
- W4313427620 cites W2528180509 @default.
- W4313427620 cites W2577726133 @default.
- W4313427620 cites W2590756615 @default.
- W4313427620 cites W2729513336 @default.
- W4313427620 cites W2756354374 @default.
- W4313427620 cites W2768181028 @default.
- W4313427620 cites W2770751151 @default.
- W4313427620 cites W2790106051 @default.
- W4313427620 cites W2790533669 @default.
- W4313427620 cites W2810268721 @default.
- W4313427620 cites W2893066337 @default.
- W4313427620 cites W2909969407 @default.
- W4313427620 cites W2914595713 @default.
- W4313427620 cites W2940887500 @default.
- W4313427620 cites W2943589076 @default.
- W4313427620 cites W2953492359 @default.
- W4313427620 cites W2972553738 @default.
- W4313427620 cites W2975829686 @default.
- W4313427620 cites W2980566696 @default.
- W4313427620 cites W2998594456 @default.
- W4313427620 cites W3048042099 @default.
- W4313427620 cites W3109199183 @default.
- W4313427620 cites W3120301779 @default.
- W4313427620 cites W3129077425 @default.
- W4313427620 cites W3129766203 @default.
- W4313427620 cites W3146393007 @default.
- W4313427620 cites W3162586719 @default.
- W4313427620 cites W3163710881 @default.
- W4313427620 cites W3165738469 @default.
- W4313427620 cites W3183526822 @default.
- W4313427620 cites W3184266071 @default.
- W4313427620 cites W3184915870 @default.
- W4313427620 cites W3185008784 @default.
- W4313427620 cites W3188127466 @default.
- W4313427620 cites W3189131763 @default.
- W4313427620 cites W3196456443 @default.
- W4313427620 cites W3202547244 @default.
- W4313427620 cites W3210918653 @default.
- W4313427620 cites W3214459236 @default.
- W4313427620 cites W3216096813 @default.
- W4313427620 cites W4211169894 @default.
- W4313427620 cites W4213349550 @default.
- W4313427620 cites W4214734313 @default.
- W4313427620 cites W4223606842 @default.
- W4313427620 cites W4224143054 @default.
- W4313427620 cites W4224221720 @default.
- W4313427620 cites W4224241586 @default.
- W4313427620 cites W4225847464 @default.
- W4313427620 cites W4229002255 @default.
- W4313427620 cites W4281570621 @default.
- W4313427620 cites W4283027994 @default.
- W4313427620 cites W4285291754 @default.
- W4313427620 cites W4285732375 @default.
- W4313427620 cites W4311955427 @default.
- W4313427620 cites W4322098529 @default.
- W4313427620 cites W843580653 @default.
- W4313427620 doi "https://doi.org/10.3390/app13010527" @default.
- W4313427620 hasPublicationYear "2022" @default.
- W4313427620 type Work @default.
- W4313427620 citedByCount "2" @default.
- W4313427620 countsByYear W43134276202023 @default.
- W4313427620 crossrefType "journal-article" @default.
- W4313427620 hasAuthorship W4313427620A5013627840 @default.
- W4313427620 hasAuthorship W4313427620A5035193805 @default.
- W4313427620 hasAuthorship W4313427620A5035300094 @default.
- W4313427620 hasAuthorship W4313427620A5086406029 @default.