Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313431350> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4313431350 abstract "Pain is a crucial function for organisms. Building a Robot Pain model inspired by organisms' pain could help the robot learn self-preservation and extend longevity. Most previous studies about robots and pain focus on robots interacting with people by recognizing their pain expressions or scenes, or avoiding obstacles by recognizing dangerous objects. Robots do not have human-like pain capacity and cannot adaptively respond to danger. Inspired by the evolutionary mechanisms of pain emergence and the Free Energy Principle (FEP) in the brain, we summarize the neural mechanisms of pain and construct a Brain-inspired Robot Pain Spiking Neural Network (BRP-SNN) with spike-time-dependent-plasticity (STDP) learning rule and population coding method.The proposed model can quantify machine injury by detecting the coupling relationship between multi-modality sensory information and generating robot pain as an internal state.We provide a comparative analysis with the results of neuroscience experiments, showing that our model has biological interpretability. We also successfully tested our model on two tasks with real robots-the alerting actual injury task and the preventing potential injury task.Our work has two major contributions: (1) It has positive implications for the integration of pain concepts into robotics in the intelligent robotics field. (2) Our summary of pain's neural mechanisms and the implemented computational simulations provide a new perspective to explore the nature of pain, which has significant value for future pain research in the cognitive neuroscience field." @default.
- W4313431350 created "2023-01-06" @default.
- W4313431350 creator A5025846619 @default.
- W4313431350 creator A5044309311 @default.
- W4313431350 date "2022-12-20" @default.
- W4313431350 modified "2023-10-13" @default.
- W4313431350 title "A brain-inspired robot pain model based on a spiking neural network" @default.
- W4313431350 cites W1525367780 @default.
- W4313431350 cites W1983573655 @default.
- W4313431350 cites W1986150374 @default.
- W4313431350 cites W1999997851 @default.
- W4313431350 cites W2006652748 @default.
- W4313431350 cites W2012699239 @default.
- W4313431350 cites W2050883619 @default.
- W4313431350 cites W2063202439 @default.
- W4313431350 cites W2098241945 @default.
- W4313431350 cites W2103734479 @default.
- W4313431350 cites W2120254525 @default.
- W4313431350 cites W2121962606 @default.
- W4313431350 cites W2136132767 @default.
- W4313431350 cites W2140443179 @default.
- W4313431350 cites W2141610063 @default.
- W4313431350 cites W2147008239 @default.
- W4313431350 cites W2148764920 @default.
- W4313431350 cites W2154123408 @default.
- W4313431350 cites W2155352776 @default.
- W4313431350 cites W2160021699 @default.
- W4313431350 cites W2164464321 @default.
- W4313431350 cites W2168558032 @default.
- W4313431350 cites W2237059274 @default.
- W4313431350 cites W2293958919 @default.
- W4313431350 cites W2330788154 @default.
- W4313431350 cites W2569813014 @default.
- W4313431350 cites W2618517468 @default.
- W4313431350 cites W2626991471 @default.
- W4313431350 cites W2801487100 @default.
- W4313431350 cites W2889784066 @default.
- W4313431350 cites W2961172539 @default.
- W4313431350 cites W2973820493 @default.
- W4313431350 cites W2974426106 @default.
- W4313431350 cites W2979431738 @default.
- W4313431350 cites W3005036724 @default.
- W4313431350 cites W3043476716 @default.
- W4313431350 cites W3090174963 @default.
- W4313431350 cites W3131336557 @default.
- W4313431350 cites W3131852626 @default.
- W4313431350 cites W4221110561 @default.
- W4313431350 cites W4223894936 @default.
- W4313431350 cites W4229372746 @default.
- W4313431350 cites W4235568894 @default.
- W4313431350 cites W4238614602 @default.
- W4313431350 cites W2763725037 @default.
- W4313431350 doi "https://doi.org/10.3389/fnbot.2022.1025338" @default.
- W4313431350 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36605522" @default.
- W4313431350 hasPublicationYear "2022" @default.
- W4313431350 type Work @default.
- W4313431350 citedByCount "2" @default.
- W4313431350 countsByYear W43134313502023 @default.
- W4313431350 crossrefType "journal-article" @default.
- W4313431350 hasAuthorship W4313431350A5025846619 @default.
- W4313431350 hasAuthorship W4313431350A5044309311 @default.
- W4313431350 hasBestOaLocation W43134313501 @default.
- W4313431350 hasConcept C107457646 @default.
- W4313431350 hasConcept C11731999 @default.
- W4313431350 hasConcept C119857082 @default.
- W4313431350 hasConcept C154945302 @default.
- W4313431350 hasConcept C2781067378 @default.
- W4313431350 hasConcept C34413123 @default.
- W4313431350 hasConcept C41008148 @default.
- W4313431350 hasConcept C50644808 @default.
- W4313431350 hasConcept C90509273 @default.
- W4313431350 hasConceptScore W4313431350C107457646 @default.
- W4313431350 hasConceptScore W4313431350C11731999 @default.
- W4313431350 hasConceptScore W4313431350C119857082 @default.
- W4313431350 hasConceptScore W4313431350C154945302 @default.
- W4313431350 hasConceptScore W4313431350C2781067378 @default.
- W4313431350 hasConceptScore W4313431350C34413123 @default.
- W4313431350 hasConceptScore W4313431350C41008148 @default.
- W4313431350 hasConceptScore W4313431350C50644808 @default.
- W4313431350 hasConceptScore W4313431350C90509273 @default.
- W4313431350 hasLocation W43134313501 @default.
- W4313431350 hasLocation W43134313502 @default.
- W4313431350 hasLocation W43134313503 @default.
- W4313431350 hasLocation W43134313504 @default.
- W4313431350 hasOpenAccess W4313431350 @default.
- W4313431350 hasPrimaryLocation W43134313501 @default.
- W4313431350 hasRelatedWork W2605281151 @default.
- W4313431350 hasRelatedWork W3006943036 @default.
- W4313431350 hasRelatedWork W3012234327 @default.
- W4313431350 hasRelatedWork W3119715496 @default.
- W4313431350 hasRelatedWork W3191046242 @default.
- W4313431350 hasRelatedWork W3203961807 @default.
- W4313431350 hasRelatedWork W4205364923 @default.
- W4313431350 hasRelatedWork W4206534706 @default.
- W4313431350 hasRelatedWork W4229079080 @default.
- W4313431350 hasRelatedWork W4294031299 @default.
- W4313431350 hasVolume "16" @default.
- W4313431350 isParatext "false" @default.
- W4313431350 isRetracted "false" @default.
- W4313431350 workType "article" @default.