Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313431595> ?p ?o ?g. }
- W4313431595 abstract "Epilepsy is a neurological disorder related to frequent seizures. Automatic seizure prediction is crucial for the prevention and treatment of epilepsy. In this paper, we propose a novel model for seizure prediction that incorporates a convolutional neural network (CNN) with multi-head attention mechanism. In this model, the shallow CNN automatically captures the EEG features, and the multi-headed attention focuses on discriminating the effective information among these features for identifying pre-ictal EEG segments. Compared with current CNN models for seizure prediction, the embedded multi-headed attention empowers the shallow CNN to be more flexible, and enables improvement of the training efficiency. Hence, this compact model is more resistant to being trapped in overfitting. The proposed method was evaluated over the scalp EEG data from the two publicly available epileptic EEG databases, and achieved outperforming values of event-level sensitivity, false prediction rate (FPR), and epoch-level F1. Furthermore, our method achieved the stable length of seizure prediction time that was between 14 and 15 min. The experimental comparisons showed that our method outperformed other prediction methods in terms of prediction and generalization performance." @default.
- W4313431595 created "2023-01-06" @default.
- W4313431595 creator A5018140935 @default.
- W4313431595 creator A5019180907 @default.
- W4313431595 creator A5046614213 @default.
- W4313431595 creator A5056899169 @default.
- W4313431595 creator A5080191032 @default.
- W4313431595 date "2023-02-23" @default.
- W4313431595 modified "2023-10-01" @default.
- W4313431595 title "Compact Convolutional Neural Network with Multi-Headed Attention Mechanism for Seizure Prediction" @default.
- W4313431595 cites W1972864710 @default.
- W4313431595 cites W2021175457 @default.
- W4313431595 cites W2032514874 @default.
- W4313431595 cites W2043596210 @default.
- W4313431595 cites W2114936913 @default.
- W4313431595 cites W2119234283 @default.
- W4313431595 cites W2154601099 @default.
- W4313431595 cites W2162800060 @default.
- W4313431595 cites W2319851220 @default.
- W4313431595 cites W2338092193 @default.
- W4313431595 cites W2345279893 @default.
- W4313431595 cites W2547104198 @default.
- W4313431595 cites W2593029741 @default.
- W4313431595 cites W2594111781 @default.
- W4313431595 cites W2622826443 @default.
- W4313431595 cites W2623028730 @default.
- W4313431595 cites W2736832651 @default.
- W4313431595 cites W2745722915 @default.
- W4313431595 cites W2759483166 @default.
- W4313431595 cites W2766958857 @default.
- W4313431595 cites W2771517407 @default.
- W4313431595 cites W2780723646 @default.
- W4313431595 cites W2793119512 @default.
- W4313431595 cites W2795691199 @default.
- W4313431595 cites W2797694788 @default.
- W4313431595 cites W2799610518 @default.
- W4313431595 cites W2804824909 @default.
- W4313431595 cites W2808093605 @default.
- W4313431595 cites W2898040341 @default.
- W4313431595 cites W2901730235 @default.
- W4313431595 cites W2908199053 @default.
- W4313431595 cites W2912922541 @default.
- W4313431595 cites W2921440296 @default.
- W4313431595 cites W2943833480 @default.
- W4313431595 cites W2945356737 @default.
- W4313431595 cites W2963420686 @default.
- W4313431595 cites W2965277555 @default.
- W4313431595 cites W2966126335 @default.
- W4313431595 cites W2974016341 @default.
- W4313431595 cites W2976267777 @default.
- W4313431595 cites W2977912634 @default.
- W4313431595 cites W2979835823 @default.
- W4313431595 cites W2992904850 @default.
- W4313431595 cites W2992989584 @default.
- W4313431595 cites W2996746229 @default.
- W4313431595 cites W3007223525 @default.
- W4313431595 cites W3007323983 @default.
- W4313431595 cites W3014186485 @default.
- W4313431595 cites W3014558148 @default.
- W4313431595 cites W3021412273 @default.
- W4313431595 cites W3031404175 @default.
- W4313431595 cites W3082062168 @default.
- W4313431595 cites W3086431504 @default.
- W4313431595 cites W3093630321 @default.
- W4313431595 cites W3094641029 @default.
- W4313431595 cites W3094644839 @default.
- W4313431595 cites W3097480381 @default.
- W4313431595 cites W3103298250 @default.
- W4313431595 cites W3107281365 @default.
- W4313431595 cites W3111419336 @default.
- W4313431595 cites W3118794207 @default.
- W4313431595 cites W3131060501 @default.
- W4313431595 cites W3139112705 @default.
- W4313431595 cites W3146685014 @default.
- W4313431595 cites W3154414470 @default.
- W4313431595 cites W3161484070 @default.
- W4313431595 cites W3165773275 @default.
- W4313431595 cites W3175836333 @default.
- W4313431595 cites W3183266704 @default.
- W4313431595 cites W3192474593 @default.
- W4313431595 cites W3195771524 @default.
- W4313431595 cites W3197467052 @default.
- W4313431595 cites W3213144748 @default.
- W4313431595 cites W4205160358 @default.
- W4313431595 cites W4221004946 @default.
- W4313431595 cites W4225514482 @default.
- W4313431595 cites W4225716641 @default.
- W4313431595 cites W4226194808 @default.
- W4313431595 cites W4229077016 @default.
- W4313431595 cites W4229441194 @default.
- W4313431595 cites W4281740372 @default.
- W4313431595 cites W4286493315 @default.
- W4313431595 doi "https://doi.org/10.1142/s0129065723500144" @default.
- W4313431595 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36811492" @default.
- W4313431595 hasPublicationYear "2023" @default.
- W4313431595 type Work @default.
- W4313431595 citedByCount "1" @default.
- W4313431595 countsByYear W43134315952023 @default.
- W4313431595 crossrefType "journal-article" @default.
- W4313431595 hasAuthorship W4313431595A5018140935 @default.