Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313431623> ?p ?o ?g. }
- W4313431623 endingPage "101327" @default.
- W4313431623 startingPage "101327" @default.
- W4313431623 abstract "Honey is often adulterated and heat treated for higher profits. This study aims to develop a low-cost, easy to perform, and less time-consuming method for screening the honey status. Known (12: adulterated 4; unadulterated 8) and unknown (7) honey samples of different geographical and biological sources were used to simulate adulteration and heat treatment effects by factorial design. Crude methanol-chloroform extracts of simulated samples were used for generating UV–Vis spectra (200-700 nm) and the effects were assessed by response surface methodology. Four machine learning classifiers were applied to predict the sample status, and among them Neural network and Random-forest were found to be satisfactory. The selected classifiers successfully detected 2 adulterated, and 4 unadulterated honeys among 7 unknown samples. Present workflow is proved to be an effective technique in detecting honey adulteration, and can be applied in honey and other food industries for optimization and quality control of their products." @default.
- W4313431623 created "2023-01-06" @default.
- W4313431623 creator A5003729720 @default.
- W4313431623 creator A5046008601 @default.
- W4313431623 creator A5057465274 @default.
- W4313431623 creator A5063022872 @default.
- W4313431623 date "2023-02-01" @default.
- W4313431623 modified "2023-10-16" @default.
- W4313431623 title "Low-cost rapid workflow for honey adulteration detection by UV–Vis spectroscopy in combination with factorial design, response surface methodology and supervised machine learning classifiers" @default.
- W4313431623 cites W1932685876 @default.
- W4313431623 cites W1964902144 @default.
- W4313431623 cites W1981976602 @default.
- W4313431623 cites W1987406807 @default.
- W4313431623 cites W2015469062 @default.
- W4313431623 cites W2022455785 @default.
- W4313431623 cites W2054791580 @default.
- W4313431623 cites W2057051756 @default.
- W4313431623 cites W2089402435 @default.
- W4313431623 cites W2104586385 @default.
- W4313431623 cites W2137643128 @default.
- W4313431623 cites W2141926242 @default.
- W4313431623 cites W2150768334 @default.
- W4313431623 cites W2229738066 @default.
- W4313431623 cites W2295828015 @default.
- W4313431623 cites W2502938998 @default.
- W4313431623 cites W2568062804 @default.
- W4313431623 cites W2569716888 @default.
- W4313431623 cites W2596971877 @default.
- W4313431623 cites W2757944064 @default.
- W4313431623 cites W2883004514 @default.
- W4313431623 cites W2885294932 @default.
- W4313431623 cites W2902199551 @default.
- W4313431623 cites W3016425058 @default.
- W4313431623 cites W3046631606 @default.
- W4313431623 cites W3050585642 @default.
- W4313431623 cites W3093536610 @default.
- W4313431623 cites W3093748282 @default.
- W4313431623 cites W3122018549 @default.
- W4313431623 cites W3126446389 @default.
- W4313431623 cites W3131087885 @default.
- W4313431623 cites W3133534903 @default.
- W4313431623 cites W3138276720 @default.
- W4313431623 cites W3147560580 @default.
- W4313431623 cites W3176881956 @default.
- W4313431623 cites W3192793228 @default.
- W4313431623 cites W4223446147 @default.
- W4313431623 cites W4225278861 @default.
- W4313431623 cites W4241956871 @default.
- W4313431623 cites W4291910451 @default.
- W4313431623 cites W4292169624 @default.
- W4313431623 cites W4292737571 @default.
- W4313431623 doi "https://doi.org/10.1016/j.biteb.2022.101327" @default.
- W4313431623 hasPublicationYear "2023" @default.
- W4313431623 type Work @default.
- W4313431623 citedByCount "1" @default.
- W4313431623 countsByYear W43134316232023 @default.
- W4313431623 crossrefType "journal-article" @default.
- W4313431623 hasAuthorship W4313431623A5003729720 @default.
- W4313431623 hasAuthorship W4313431623A5046008601 @default.
- W4313431623 hasAuthorship W4313431623A5057465274 @default.
- W4313431623 hasAuthorship W4313431623A5063022872 @default.
- W4313431623 hasConcept C119857082 @default.
- W4313431623 hasConcept C127413603 @default.
- W4313431623 hasConcept C150077022 @default.
- W4313431623 hasConcept C150903083 @default.
- W4313431623 hasConcept C151304367 @default.
- W4313431623 hasConcept C153180895 @default.
- W4313431623 hasConcept C154945302 @default.
- W4313431623 hasConcept C16469947 @default.
- W4313431623 hasConcept C169222746 @default.
- W4313431623 hasConcept C177212765 @default.
- W4313431623 hasConcept C183696295 @default.
- W4313431623 hasConcept C185592680 @default.
- W4313431623 hasConcept C31903555 @default.
- W4313431623 hasConcept C33923547 @default.
- W4313431623 hasConcept C41008148 @default.
- W4313431623 hasConcept C50644808 @default.
- W4313431623 hasConcept C77088390 @default.
- W4313431623 hasConcept C86803240 @default.
- W4313431623 hasConceptScore W4313431623C119857082 @default.
- W4313431623 hasConceptScore W4313431623C127413603 @default.
- W4313431623 hasConceptScore W4313431623C150077022 @default.
- W4313431623 hasConceptScore W4313431623C150903083 @default.
- W4313431623 hasConceptScore W4313431623C151304367 @default.
- W4313431623 hasConceptScore W4313431623C153180895 @default.
- W4313431623 hasConceptScore W4313431623C154945302 @default.
- W4313431623 hasConceptScore W4313431623C16469947 @default.
- W4313431623 hasConceptScore W4313431623C169222746 @default.
- W4313431623 hasConceptScore W4313431623C177212765 @default.
- W4313431623 hasConceptScore W4313431623C183696295 @default.
- W4313431623 hasConceptScore W4313431623C185592680 @default.
- W4313431623 hasConceptScore W4313431623C31903555 @default.
- W4313431623 hasConceptScore W4313431623C33923547 @default.
- W4313431623 hasConceptScore W4313431623C41008148 @default.
- W4313431623 hasConceptScore W4313431623C50644808 @default.
- W4313431623 hasConceptScore W4313431623C77088390 @default.
- W4313431623 hasConceptScore W4313431623C86803240 @default.
- W4313431623 hasFunder F4320320719 @default.