Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313432039> ?p ?o ?g. }
- W4313432039 endingPage "341" @default.
- W4313432039 startingPage "323" @default.
- W4313432039 abstract "The method of time series analysis, applied by establishing appropriate mathematical models for bridge health monitoring data and making forecasts of structural future behavior, stands out as a novel and viable research direction for bridge state assessment. However, outliers inevitably exist in the monitoring data due to various interventions, which reduce the precision of model fitting and affect the forecasting results. Therefore, the identification of outliers is crucial for the accurate interpretation of the monitoring data. In this study, a time series model combined with outlier information for bridge health monitoring is established using intervention analysis theory, and the forecasting of the structural responses is carried out. There are three techniques that we focus on: (1) the modeling of seasonal autoregressive integrated moving average (SARIMA) model; (2) the methodology for outlier identification and amendment under the circumstances that the occurrence time and type of outliers are known and unknown; (3) forecasting of the model with outlier effects. The method was tested with a case study using monitoring data on a real bridge. The establishment of the original SARIMA model without considering outliers is first discussed, including the stationarity, order determination, parameter estimation and diagnostic checking of the model. Then the time-by-time iterative procedure for outlier detection, which is implemented by appropriate test statistics of the residuals, is performed. The SARIMA-outlier model is subsequently built. Finally, a comparative analysis of the forecasting performance between the original model and SARIMA-outlier model is carried out. The results demonstrate that proper time series models are effective in mining the characteristic law of bridge monitoring data. When the influence of outliers is taken into account, the fitted precision of the model is significantly improved and the accuracy and the reliability of the forecast are strengthened." @default.
- W4313432039 created "2023-01-06" @default.
- W4313432039 creator A5014990227 @default.
- W4313432039 creator A5021574558 @default.
- W4313432039 creator A5089229924 @default.
- W4313432039 date "2022-01-01" @default.
- W4313432039 modified "2023-10-16" @default.
- W4313432039 title "Outlier Detection and Forecasting for Bridge Health Monitoring Based on Time Series Intervention Analysis" @default.
- W4313432039 cites W1964688815 @default.
- W4313432039 cites W2009860587 @default.
- W4313432039 cites W2035912441 @default.
- W4313432039 cites W2051380226 @default.
- W4313432039 cites W2085305167 @default.
- W4313432039 cites W2125793385 @default.
- W4313432039 cites W2140394893 @default.
- W4313432039 cites W2154287728 @default.
- W4313432039 cites W2160366284 @default.
- W4313432039 cites W2768550880 @default.
- W4313432039 cites W2783688173 @default.
- W4313432039 cites W2785232536 @default.
- W4313432039 cites W2889512547 @default.
- W4313432039 cites W2895863452 @default.
- W4313432039 cites W2911081702 @default.
- W4313432039 cites W2916772210 @default.
- W4313432039 cites W2919946988 @default.
- W4313432039 cites W2953678448 @default.
- W4313432039 cites W2955563491 @default.
- W4313432039 cites W2999795060 @default.
- W4313432039 cites W3011055781 @default.
- W4313432039 cites W3016659228 @default.
- W4313432039 cites W3045530378 @default.
- W4313432039 cites W3083664991 @default.
- W4313432039 cites W3111573494 @default.
- W4313432039 cites W3121711568 @default.
- W4313432039 cites W3135524044 @default.
- W4313432039 cites W3137262131 @default.
- W4313432039 cites W3179070535 @default.
- W4313432039 cites W4238235003 @default.
- W4313432039 cites W4255715712 @default.
- W4313432039 doi "https://doi.org/10.32604/sdhm.2022.021446" @default.
- W4313432039 hasPublicationYear "2022" @default.
- W4313432039 type Work @default.
- W4313432039 citedByCount "0" @default.
- W4313432039 crossrefType "journal-article" @default.
- W4313432039 hasAuthorship W4313432039A5014990227 @default.
- W4313432039 hasAuthorship W4313432039A5021574558 @default.
- W4313432039 hasAuthorship W4313432039A5089229924 @default.
- W4313432039 hasBestOaLocation W43134320391 @default.
- W4313432039 hasConcept C100776233 @default.
- W4313432039 hasConcept C105795698 @default.
- W4313432039 hasConcept C116834253 @default.
- W4313432039 hasConcept C119857082 @default.
- W4313432039 hasConcept C124101348 @default.
- W4313432039 hasConcept C126322002 @default.
- W4313432039 hasConcept C127413603 @default.
- W4313432039 hasConcept C143724316 @default.
- W4313432039 hasConcept C151406439 @default.
- W4313432039 hasConcept C151730666 @default.
- W4313432039 hasConcept C154945302 @default.
- W4313432039 hasConcept C159877910 @default.
- W4313432039 hasConcept C24338571 @default.
- W4313432039 hasConcept C2776247918 @default.
- W4313432039 hasConcept C33923547 @default.
- W4313432039 hasConcept C41008148 @default.
- W4313432039 hasConcept C59822182 @default.
- W4313432039 hasConcept C66938386 @default.
- W4313432039 hasConcept C71924100 @default.
- W4313432039 hasConcept C739882 @default.
- W4313432039 hasConcept C74883015 @default.
- W4313432039 hasConcept C79337645 @default.
- W4313432039 hasConcept C86803240 @default.
- W4313432039 hasConceptScore W4313432039C100776233 @default.
- W4313432039 hasConceptScore W4313432039C105795698 @default.
- W4313432039 hasConceptScore W4313432039C116834253 @default.
- W4313432039 hasConceptScore W4313432039C119857082 @default.
- W4313432039 hasConceptScore W4313432039C124101348 @default.
- W4313432039 hasConceptScore W4313432039C126322002 @default.
- W4313432039 hasConceptScore W4313432039C127413603 @default.
- W4313432039 hasConceptScore W4313432039C143724316 @default.
- W4313432039 hasConceptScore W4313432039C151406439 @default.
- W4313432039 hasConceptScore W4313432039C151730666 @default.
- W4313432039 hasConceptScore W4313432039C154945302 @default.
- W4313432039 hasConceptScore W4313432039C159877910 @default.
- W4313432039 hasConceptScore W4313432039C24338571 @default.
- W4313432039 hasConceptScore W4313432039C2776247918 @default.
- W4313432039 hasConceptScore W4313432039C33923547 @default.
- W4313432039 hasConceptScore W4313432039C41008148 @default.
- W4313432039 hasConceptScore W4313432039C59822182 @default.
- W4313432039 hasConceptScore W4313432039C66938386 @default.
- W4313432039 hasConceptScore W4313432039C71924100 @default.
- W4313432039 hasConceptScore W4313432039C739882 @default.
- W4313432039 hasConceptScore W4313432039C74883015 @default.
- W4313432039 hasConceptScore W4313432039C79337645 @default.
- W4313432039 hasConceptScore W4313432039C86803240 @default.
- W4313432039 hasIssue "4" @default.
- W4313432039 hasLocation W43134320391 @default.
- W4313432039 hasOpenAccess W4313432039 @default.
- W4313432039 hasPrimaryLocation W43134320391 @default.