Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313433093> ?p ?o ?g. }
- W4313433093 endingPage "272" @default.
- W4313433093 startingPage "272" @default.
- W4313433093 abstract "Many heavy and lightweight convolutional neural networks (CNNs) require large datasets and parameter tuning. Moreover, they consume time and computer resources. A new lightweight model called FlexibleNet was created to overcome these obstacles. The new lightweight model is a CNN scaling-based model (width, depth, and resolution). Unlike the conventional practice, which arbitrarily scales these factors, FlexibleNet uniformly scales the network width, depth, and resolution with a set of fixed scaling coefficients. The new model was tested by qualitatively estimating sequestered carbon in the aboveground forest biomass from Sentinel-2 images. We also created three different sizes of training datasets. The new training datasets consisted of six qualitative categories (no carbon, very low, low, medium, high, and very high). The results showed that FlexibleNet was better or comparable to the other lightweight or heavy CNN models concerning the number of parameters and time requirements. Moreover, FlexibleNet had the highest accuracy compared to these CNN models. Finally, the FlexibleNet model showed robustness and low parameter tuning requirements when a small dataset was provided for training compared to other models." @default.
- W4313433093 created "2023-01-06" @default.
- W4313433093 creator A5050578714 @default.
- W4313433093 date "2023-01-02" @default.
- W4313433093 modified "2023-09-27" @default.
- W4313433093 title "FlexibleNet: A New Lightweight Convolutional Neural Network Model for Estimating Carbon Sequestration Qualitatively Using Remote Sensing" @default.
- W4313433093 cites W1569098853 @default.
- W4313433093 cites W2035699010 @default.
- W4313433093 cites W2078840559 @default.
- W4313433093 cites W2097117768 @default.
- W4313433093 cites W2102605133 @default.
- W4313433093 cites W2104830773 @default.
- W4313433093 cites W2124706543 @default.
- W4313433093 cites W2239420939 @default.
- W4313433093 cites W2306570595 @default.
- W4313433093 cites W2462592242 @default.
- W4313433093 cites W2531409750 @default.
- W4313433093 cites W2565516711 @default.
- W4313433093 cites W2600686910 @default.
- W4313433093 cites W2751786729 @default.
- W4313433093 cites W2756791498 @default.
- W4313433093 cites W2883780447 @default.
- W4313433093 cites W2900673083 @default.
- W4313433093 cites W2919115771 @default.
- W4313433093 cites W2962434958 @default.
- W4313433093 cites W2963163009 @default.
- W4313433093 cites W2963361348 @default.
- W4313433093 cites W2964658395 @default.
- W4313433093 cites W2966350036 @default.
- W4313433093 cites W2982083293 @default.
- W4313433093 cites W3006212173 @default.
- W4313433093 cites W3010923682 @default.
- W4313433093 cites W3014323018 @default.
- W4313433093 cites W3035950063 @default.
- W4313433093 cites W3040323135 @default.
- W4313433093 cites W3094003074 @default.
- W4313433093 cites W3100321043 @default.
- W4313433093 cites W3118753658 @default.
- W4313433093 cites W3129469040 @default.
- W4313433093 cites W3152894225 @default.
- W4313433093 cites W3160716376 @default.
- W4313433093 cites W3169203486 @default.
- W4313433093 cites W3194730353 @default.
- W4313433093 cites W4200298995 @default.
- W4313433093 cites W4200420685 @default.
- W4313433093 cites W4224325123 @default.
- W4313433093 cites W4247980034 @default.
- W4313433093 cites W4283385126 @default.
- W4313433093 cites W4307995203 @default.
- W4313433093 cites W4310380753 @default.
- W4313433093 doi "https://doi.org/10.3390/rs15010272" @default.
- W4313433093 hasPublicationYear "2023" @default.
- W4313433093 type Work @default.
- W4313433093 citedByCount "2" @default.
- W4313433093 countsByYear W43134330932023 @default.
- W4313433093 crossrefType "journal-article" @default.
- W4313433093 hasAuthorship W4313433093A5050578714 @default.
- W4313433093 hasBestOaLocation W43134330931 @default.
- W4313433093 hasConcept C104317684 @default.
- W4313433093 hasConcept C11413529 @default.
- W4313433093 hasConcept C124101348 @default.
- W4313433093 hasConcept C127313418 @default.
- W4313433093 hasConcept C153180895 @default.
- W4313433093 hasConcept C154945302 @default.
- W4313433093 hasConcept C177264268 @default.
- W4313433093 hasConcept C185592680 @default.
- W4313433093 hasConcept C199360897 @default.
- W4313433093 hasConcept C2524010 @default.
- W4313433093 hasConcept C33923547 @default.
- W4313433093 hasConcept C41008148 @default.
- W4313433093 hasConcept C51632099 @default.
- W4313433093 hasConcept C55493867 @default.
- W4313433093 hasConcept C62649853 @default.
- W4313433093 hasConcept C63479239 @default.
- W4313433093 hasConcept C81363708 @default.
- W4313433093 hasConcept C99844830 @default.
- W4313433093 hasConceptScore W4313433093C104317684 @default.
- W4313433093 hasConceptScore W4313433093C11413529 @default.
- W4313433093 hasConceptScore W4313433093C124101348 @default.
- W4313433093 hasConceptScore W4313433093C127313418 @default.
- W4313433093 hasConceptScore W4313433093C153180895 @default.
- W4313433093 hasConceptScore W4313433093C154945302 @default.
- W4313433093 hasConceptScore W4313433093C177264268 @default.
- W4313433093 hasConceptScore W4313433093C185592680 @default.
- W4313433093 hasConceptScore W4313433093C199360897 @default.
- W4313433093 hasConceptScore W4313433093C2524010 @default.
- W4313433093 hasConceptScore W4313433093C33923547 @default.
- W4313433093 hasConceptScore W4313433093C41008148 @default.
- W4313433093 hasConceptScore W4313433093C51632099 @default.
- W4313433093 hasConceptScore W4313433093C55493867 @default.
- W4313433093 hasConceptScore W4313433093C62649853 @default.
- W4313433093 hasConceptScore W4313433093C63479239 @default.
- W4313433093 hasConceptScore W4313433093C81363708 @default.
- W4313433093 hasConceptScore W4313433093C99844830 @default.
- W4313433093 hasIssue "1" @default.
- W4313433093 hasLocation W43134330931 @default.
- W4313433093 hasOpenAccess W4313433093 @default.
- W4313433093 hasPrimaryLocation W43134330931 @default.