Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313441566> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4313441566 endingPage "117" @default.
- W4313441566 startingPage "108" @default.
- W4313441566 abstract "The novel coronavirus disease (COVID-19) is an ongoing pandemic with large global attention. However, spreading fake news on social media sites like Twitter is creating unnecessary anxiety and panic among people towards this disease. In this paper, we applied machine learning (ML) techniques to predict the sentiment of the people using social media such as Twitter during the COVID-19 peak in April 2021. The data contains tweets collected on the dates between 16 April 2021 and 26 April 2021 where the text of the tweets has been labelled by training the models with an already labelled dataset of corona virus tweets as positive, negative, and neutral. Sentiment analysis was conducted by a deep learning model known as Bidirectional Encoder Representations from Transformers (BERT) and various ML models for text analysis and performance which were then compared among each other. ML models used were Naïve Bayes, Logistic Regression, Random Forest, Support Vector Machines, Stochastic Gradient Descent and Extreme Gradient Boosting. Accuracy for every sentiment was separately calculated. The classification accuracies of all the ML models produced were 66.4%, 77.7%, 74.5%, 74.7%, 78.6%, and 75.5%, respectively and BERT model produced 84.2%. Each sentiment-classified model has accuracy around or above 75%, which is a quite significant value in text mining algorithms. We could infer that most people tweeting are taking positive and neutral approaches." @default.
- W4313441566 created "2023-01-06" @default.
- W4313441566 creator A5012836937 @default.
- W4313441566 creator A5086845888 @default.
- W4313441566 date "2023-01-01" @default.
- W4313441566 modified "2023-10-09" @default.
- W4313441566 title "Sentimental analysis of COVID-19 twitter data using deep learning and machine learning models" @default.
- W4313441566 cites W2014545475 @default.
- W4313441566 cites W3024878456 @default.
- W4313441566 cites W3033356006 @default.
- W4313441566 cites W3094221957 @default.
- W4313441566 cites W3096393000 @default.
- W4313441566 cites W3105951585 @default.
- W4313441566 cites W3125087699 @default.
- W4313441566 cites W3131504710 @default.
- W4313441566 cites W3133971464 @default.
- W4313441566 cites W3134511827 @default.
- W4313441566 cites W3134990902 @default.
- W4313441566 cites W3146682110 @default.
- W4313441566 doi "https://doi.org/10.17163/ings.n29.2023.10" @default.
- W4313441566 hasPublicationYear "2023" @default.
- W4313441566 type Work @default.
- W4313441566 citedByCount "1" @default.
- W4313441566 crossrefType "journal-article" @default.
- W4313441566 hasAuthorship W4313441566A5012836937 @default.
- W4313441566 hasAuthorship W4313441566A5086845888 @default.
- W4313441566 hasBestOaLocation W43134415661 @default.
- W4313441566 hasConcept C108583219 @default.
- W4313441566 hasConcept C119857082 @default.
- W4313441566 hasConcept C12267149 @default.
- W4313441566 hasConcept C136764020 @default.
- W4313441566 hasConcept C142724271 @default.
- W4313441566 hasConcept C151956035 @default.
- W4313441566 hasConcept C154945302 @default.
- W4313441566 hasConcept C169258074 @default.
- W4313441566 hasConcept C204321447 @default.
- W4313441566 hasConcept C2779134260 @default.
- W4313441566 hasConcept C3008058167 @default.
- W4313441566 hasConcept C41008148 @default.
- W4313441566 hasConcept C518677369 @default.
- W4313441566 hasConcept C52001869 @default.
- W4313441566 hasConcept C524204448 @default.
- W4313441566 hasConcept C66402592 @default.
- W4313441566 hasConcept C70153297 @default.
- W4313441566 hasConcept C71924100 @default.
- W4313441566 hasConceptScore W4313441566C108583219 @default.
- W4313441566 hasConceptScore W4313441566C119857082 @default.
- W4313441566 hasConceptScore W4313441566C12267149 @default.
- W4313441566 hasConceptScore W4313441566C136764020 @default.
- W4313441566 hasConceptScore W4313441566C142724271 @default.
- W4313441566 hasConceptScore W4313441566C151956035 @default.
- W4313441566 hasConceptScore W4313441566C154945302 @default.
- W4313441566 hasConceptScore W4313441566C169258074 @default.
- W4313441566 hasConceptScore W4313441566C204321447 @default.
- W4313441566 hasConceptScore W4313441566C2779134260 @default.
- W4313441566 hasConceptScore W4313441566C3008058167 @default.
- W4313441566 hasConceptScore W4313441566C41008148 @default.
- W4313441566 hasConceptScore W4313441566C518677369 @default.
- W4313441566 hasConceptScore W4313441566C52001869 @default.
- W4313441566 hasConceptScore W4313441566C524204448 @default.
- W4313441566 hasConceptScore W4313441566C66402592 @default.
- W4313441566 hasConceptScore W4313441566C70153297 @default.
- W4313441566 hasConceptScore W4313441566C71924100 @default.
- W4313441566 hasIssue "29" @default.
- W4313441566 hasLocation W43134415661 @default.
- W4313441566 hasOpenAccess W4313441566 @default.
- W4313441566 hasPrimaryLocation W43134415661 @default.
- W4313441566 hasRelatedWork W2985924212 @default.
- W4313441566 hasRelatedWork W4214951795 @default.
- W4313441566 hasRelatedWork W4223564025 @default.
- W4313441566 hasRelatedWork W4226485841 @default.
- W4313441566 hasRelatedWork W4281616679 @default.
- W4313441566 hasRelatedWork W4281846282 @default.
- W4313441566 hasRelatedWork W4312478656 @default.
- W4313441566 hasRelatedWork W4321636153 @default.
- W4313441566 hasRelatedWork W4375930479 @default.
- W4313441566 hasRelatedWork W4377964522 @default.
- W4313441566 isParatext "false" @default.
- W4313441566 isRetracted "false" @default.
- W4313441566 workType "article" @default.