Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313441877> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4313441877 abstract "Regional emulation tools based on statistical relationships, such as pattern scaling, provide a computationally inexpensive way of projecting ocean dynamic sea-level change for a broad range of climate change scenarios. Such approaches usually require a careful selection of one or more predictor variables of climate change so that the statistical model is properly optimized. Even when appropriate predictors have been selected, spatiotemporal oscillations driven by internal climate variability can be a large source of model disagreement. Using pattern recognition techniques that exploit spatial covariance information can effectively reduce internal variability in simulations of ocean dynamic sea level, significantly reducing random errors in regional emulation tools. Here, we test two pattern recognition methods based on Empirical Orthogonal Functions (EOF), namely signal-to-noise maximising EOF pattern filtering and low-frequency component analysis, for their ability to reduce errors in pattern scaling of ocean dynamic sea-level change. These two methods are applied to the initial-condition large ensemble MPI-GE, so that internal variability is optimally characterized while avoiding model biases. We show that pattern filtering provides an efficient way of reducing errors compared to other conventional approaches such as a simple ensemble average. For instance, filtering only two realizations by characterising their common response to external forcing reduces the random error by almost 60 %, a reduction level that is only achieved by averaging at least 12 realizations. We further investigate the applicability of both methods to single realization modelling experiments, including four CMIP5 simulations for comparison with previous regional emulation analyses. Pattern scaling leads to a varying degree of error reduction depending on the model and scenario, ranging from more than 20 % to about 70 % reduction in global-mean root-mean-squared error compared with unfiltered simulations. Our results highlight the relevance of pattern recognition methods as a tool to reduce errors in regional emulation tools of ocean dynamic sea-level change, especially when one or a few realizations are available. Removing internal variability prior to tuning regional emulation tools can optimize the performance of the statistical model and simplify the choice of suitable predictors." @default.
- W4313441877 created "2023-01-06" @default.
- W4313441877 date "2023-01-03" @default.
- W4313441877 modified "2023-10-17" @default.
- W4313441877 title "Comment on egusphere-2022-1293" @default.
- W4313441877 doi "https://doi.org/10.5194/egusphere-2022-1293-rc1" @default.
- W4313441877 hasPublicationYear "2023" @default.
- W4313441877 type Work @default.
- W4313441877 citedByCount "0" @default.
- W4313441877 crossrefType "peer-review" @default.
- W4313441877 hasBestOaLocation W43134418771 @default.
- W4313441877 hasConcept C105795698 @default.
- W4313441877 hasConcept C11413529 @default.
- W4313441877 hasConcept C115961682 @default.
- W4313441877 hasConcept C119857082 @default.
- W4313441877 hasConcept C134306372 @default.
- W4313441877 hasConcept C13724139 @default.
- W4313441877 hasConcept C149810388 @default.
- W4313441877 hasConcept C154945302 @default.
- W4313441877 hasConcept C159985019 @default.
- W4313441877 hasConcept C162324750 @default.
- W4313441877 hasConcept C178650346 @default.
- W4313441877 hasConcept C192562407 @default.
- W4313441877 hasConcept C197115733 @default.
- W4313441877 hasConcept C204323151 @default.
- W4313441877 hasConcept C2524010 @default.
- W4313441877 hasConcept C2781089630 @default.
- W4313441877 hasConcept C33923547 @default.
- W4313441877 hasConcept C41008148 @default.
- W4313441877 hasConcept C50522688 @default.
- W4313441877 hasConcept C99498987 @default.
- W4313441877 hasConcept C99844830 @default.
- W4313441877 hasConceptScore W4313441877C105795698 @default.
- W4313441877 hasConceptScore W4313441877C11413529 @default.
- W4313441877 hasConceptScore W4313441877C115961682 @default.
- W4313441877 hasConceptScore W4313441877C119857082 @default.
- W4313441877 hasConceptScore W4313441877C134306372 @default.
- W4313441877 hasConceptScore W4313441877C13724139 @default.
- W4313441877 hasConceptScore W4313441877C149810388 @default.
- W4313441877 hasConceptScore W4313441877C154945302 @default.
- W4313441877 hasConceptScore W4313441877C159985019 @default.
- W4313441877 hasConceptScore W4313441877C162324750 @default.
- W4313441877 hasConceptScore W4313441877C178650346 @default.
- W4313441877 hasConceptScore W4313441877C192562407 @default.
- W4313441877 hasConceptScore W4313441877C197115733 @default.
- W4313441877 hasConceptScore W4313441877C204323151 @default.
- W4313441877 hasConceptScore W4313441877C2524010 @default.
- W4313441877 hasConceptScore W4313441877C2781089630 @default.
- W4313441877 hasConceptScore W4313441877C33923547 @default.
- W4313441877 hasConceptScore W4313441877C41008148 @default.
- W4313441877 hasConceptScore W4313441877C50522688 @default.
- W4313441877 hasConceptScore W4313441877C99498987 @default.
- W4313441877 hasConceptScore W4313441877C99844830 @default.
- W4313441877 hasLocation W43134418771 @default.
- W4313441877 hasOpenAccess W4313441877 @default.
- W4313441877 hasPrimaryLocation W43134418771 @default.
- W4313441877 hasRelatedWork W1982059157 @default.
- W4313441877 hasRelatedWork W2105508921 @default.
- W4313441877 hasRelatedWork W2156269510 @default.
- W4313441877 hasRelatedWork W2352047550 @default.
- W4313441877 hasRelatedWork W2364163520 @default.
- W4313441877 hasRelatedWork W2365238420 @default.
- W4313441877 hasRelatedWork W2884535015 @default.
- W4313441877 hasRelatedWork W2915206471 @default.
- W4313441877 hasRelatedWork W3148598955 @default.
- W4313441877 hasRelatedWork W641208093 @default.
- W4313441877 isParatext "false" @default.
- W4313441877 isRetracted "false" @default.
- W4313441877 workType "peer-review" @default.