Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313442316> ?p ?o ?g. }
- W4313442316 endingPage "107708" @default.
- W4313442316 startingPage "107708" @default.
- W4313442316 abstract "A better understanding of soil response to dynamic loads, including earthquakes, can result in safer designs that can reduce casualties. The damping ratio and shear modulus are critical parameters in soil dynamics, and several factors affect these parameters, including density and moisture content. The non-linear and multiple influences on these two parameters make their estimation difficult. Machine learning techniques are very powerful mapping tools with a remarkable capacity to perform nonlinear multivariate function approximations. In this study, to predict sand secant shear modulus and damping ratio from input variables, artificial neural networks (ANN) and classification and regression random forests (CRRF) were used as alternative estimators. The database was created using a series of simple shear tests that accurately assessed damping ratios and secant shear modulus to predict these two dynamic parameters. The input variables of the proposed predictive models included vertical stress, relative density and cyclic stress ratio, and its outputs included secant shear modulus and damping ratio. The Bayesian Regularization (BR) back-propagation ANN model produced correlation coefficient (R) and mean absolute error (MAE) values of 0.998 and 0.006, respectively, while CRRF models gave R and MAE values of 0.995 and 66.051, respectively. Additionally, sensitivity analysis of artificial intelligence (AI) models demonstrated that vertical stress and relative density played a vital role in predicting damping ratio, while all three parameters were important in predicting secant shear modulus. In this study, two developed artificial intelligence models were compared with existing literature models. According to the results, for test database, the existing models were able to predict the shear modulus and damping ratio with R of 0.911 and 0.918, respectively. However, the proposed ANN and CRRF models were able to predict shear modulus with R of 0.993 and 0.996, and damping ratios with R of 0.992 and 0.990, respectively. The results showed that ANNs and CRRFs were more robust than existing models for predicting damping ratio and shear modulus, as well as identifying the influence of input variables on sand dynamic properties." @default.
- W4313442316 created "2023-01-06" @default.
- W4313442316 creator A5004350213 @default.
- W4313442316 creator A5006456785 @default.
- W4313442316 creator A5076421863 @default.
- W4313442316 creator A5078742345 @default.
- W4313442316 date "2023-02-01" @default.
- W4313442316 modified "2023-10-14" @default.
- W4313442316 title "Prediction of secant shear modulus and damping ratio for an extremely dilative silica sand based on machine learning techniques" @default.
- W4313442316 cites W1081565272 @default.
- W4313442316 cites W1102176666 @default.
- W4313442316 cites W1491085163 @default.
- W4313442316 cites W1515821509 @default.
- W4313442316 cites W1872869210 @default.
- W4313442316 cites W1978805166 @default.
- W4313442316 cites W1984477382 @default.
- W4313442316 cites W1994074819 @default.
- W4313442316 cites W2013895835 @default.
- W4313442316 cites W2019802126 @default.
- W4313442316 cites W2031553316 @default.
- W4313442316 cites W2038453704 @default.
- W4313442316 cites W2040870580 @default.
- W4313442316 cites W2045705603 @default.
- W4313442316 cites W2046128283 @default.
- W4313442316 cites W2074767958 @default.
- W4313442316 cites W2082086809 @default.
- W4313442316 cites W2087070363 @default.
- W4313442316 cites W2098412215 @default.
- W4313442316 cites W2146144498 @default.
- W4313442316 cites W2319265207 @default.
- W4313442316 cites W2327646080 @default.
- W4313442316 cites W2611519988 @default.
- W4313442316 cites W2761717969 @default.
- W4313442316 cites W2800829044 @default.
- W4313442316 cites W2807213788 @default.
- W4313442316 cites W2817602254 @default.
- W4313442316 cites W2903090002 @default.
- W4313442316 cites W2910749883 @default.
- W4313442316 cites W2911964244 @default.
- W4313442316 cites W2946478269 @default.
- W4313442316 cites W2963781279 @default.
- W4313442316 cites W2980532416 @default.
- W4313442316 cites W3015444992 @default.
- W4313442316 cites W3045371493 @default.
- W4313442316 cites W3045962148 @default.
- W4313442316 cites W3111083809 @default.
- W4313442316 cites W3156592739 @default.
- W4313442316 cites W4220909006 @default.
- W4313442316 doi "https://doi.org/10.1016/j.soildyn.2022.107708" @default.
- W4313442316 hasPublicationYear "2023" @default.
- W4313442316 type Work @default.
- W4313442316 citedByCount "10" @default.
- W4313442316 countsByYear W43134423162023 @default.
- W4313442316 crossrefType "journal-article" @default.
- W4313442316 hasAuthorship W4313442316A5004350213 @default.
- W4313442316 hasAuthorship W4313442316A5006456785 @default.
- W4313442316 hasAuthorship W4313442316A5076421863 @default.
- W4313442316 hasAuthorship W4313442316A5078742345 @default.
- W4313442316 hasConcept C105795698 @default.
- W4313442316 hasConcept C119857082 @default.
- W4313442316 hasConcept C121332964 @default.
- W4313442316 hasConcept C122383733 @default.
- W4313442316 hasConcept C124139854 @default.
- W4313442316 hasConcept C127313418 @default.
- W4313442316 hasConcept C158622935 @default.
- W4313442316 hasConcept C159985019 @default.
- W4313442316 hasConcept C185429906 @default.
- W4313442316 hasConcept C187320778 @default.
- W4313442316 hasConcept C191204318 @default.
- W4313442316 hasConcept C192562407 @default.
- W4313442316 hasConcept C198394728 @default.
- W4313442316 hasConcept C21141959 @default.
- W4313442316 hasConcept C2780150128 @default.
- W4313442316 hasConcept C28826006 @default.
- W4313442316 hasConcept C33923547 @default.
- W4313442316 hasConcept C41008148 @default.
- W4313442316 hasConcept C41279357 @default.
- W4313442316 hasConcept C50644808 @default.
- W4313442316 hasConcept C521977710 @default.
- W4313442316 hasConcept C62520636 @default.
- W4313442316 hasConcept C7055690 @default.
- W4313442316 hasConceptScore W4313442316C105795698 @default.
- W4313442316 hasConceptScore W4313442316C119857082 @default.
- W4313442316 hasConceptScore W4313442316C121332964 @default.
- W4313442316 hasConceptScore W4313442316C122383733 @default.
- W4313442316 hasConceptScore W4313442316C124139854 @default.
- W4313442316 hasConceptScore W4313442316C127313418 @default.
- W4313442316 hasConceptScore W4313442316C158622935 @default.
- W4313442316 hasConceptScore W4313442316C159985019 @default.
- W4313442316 hasConceptScore W4313442316C185429906 @default.
- W4313442316 hasConceptScore W4313442316C187320778 @default.
- W4313442316 hasConceptScore W4313442316C191204318 @default.
- W4313442316 hasConceptScore W4313442316C192562407 @default.
- W4313442316 hasConceptScore W4313442316C198394728 @default.
- W4313442316 hasConceptScore W4313442316C21141959 @default.
- W4313442316 hasConceptScore W4313442316C2780150128 @default.
- W4313442316 hasConceptScore W4313442316C28826006 @default.
- W4313442316 hasConceptScore W4313442316C33923547 @default.