Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313442511> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4313442511 endingPage "94" @default.
- W4313442511 startingPage "82" @default.
- W4313442511 abstract "The stock market is a widely used investment scheme promising high returns, but it has some risks. It is an act to forecast the future value of the stock market. The change in the stock market is explosive, and there are multiple sophisticated financial indicators. Still, the enhancement in technology provides a chance to grow constant fortune from the stock market and so helps experts to detect the most enlightening indicators to produce better predictions. Machine learning algorithms have made a magnificent effect in determining stocks precisely. This paper proposed a multiple regression algorithm for determining the future value of a stock. The first thing that was taken into account is the dataset of the companies Apple and Microsoft. Live historical data has been collected from yahoo finance. The dataset was preprocessed and tuned up for real analysis. Hence, this paper also focused on preprocessing of the raw dataset. After preprocessing the data, some forecasting measures are suggested, such as momentum, volatility, index volatility, and stock." @default.
- W4313442511 created "2023-01-06" @default.
- W4313442511 creator A5062632839 @default.
- W4313442511 creator A5067439405 @default.
- W4313442511 creator A5069418273 @default.
- W4313442511 creator A5070225476 @default.
- W4313442511 date "2023-01-03" @default.
- W4313442511 modified "2023-09-26" @default.
- W4313442511 title "Deepfakes on Smart Devices in Stock Price Prediction Using Machine Learning" @default.
- W4313442511 cites W2914766689 @default.
- W4313442511 cites W2948912642 @default.
- W4313442511 cites W3011387630 @default.
- W4313442511 cites W3018758730 @default.
- W4313442511 cites W3035493771 @default.
- W4313442511 cites W3036149562 @default.
- W4313442511 cites W3048630347 @default.
- W4313442511 cites W3123507475 @default.
- W4313442511 cites W4206335986 @default.
- W4313442511 cites W4233706841 @default.
- W4313442511 doi "https://doi.org/10.4018/978-1-6684-6060-3.ch007" @default.
- W4313442511 hasPublicationYear "2023" @default.
- W4313442511 type Work @default.
- W4313442511 citedByCount "0" @default.
- W4313442511 crossrefType "book-chapter" @default.
- W4313442511 hasAuthorship W4313442511A5062632839 @default.
- W4313442511 hasAuthorship W4313442511A5067439405 @default.
- W4313442511 hasAuthorship W4313442511A5069418273 @default.
- W4313442511 hasAuthorship W4313442511A5070225476 @default.
- W4313442511 hasConcept C10138342 @default.
- W4313442511 hasConcept C119857082 @default.
- W4313442511 hasConcept C127413603 @default.
- W4313442511 hasConcept C149782125 @default.
- W4313442511 hasConcept C154945302 @default.
- W4313442511 hasConcept C162324750 @default.
- W4313442511 hasConcept C166957645 @default.
- W4313442511 hasConcept C175025494 @default.
- W4313442511 hasConcept C194872599 @default.
- W4313442511 hasConcept C204036174 @default.
- W4313442511 hasConcept C205649164 @default.
- W4313442511 hasConcept C2779343474 @default.
- W4313442511 hasConcept C2780299701 @default.
- W4313442511 hasConcept C34736171 @default.
- W4313442511 hasConcept C41008148 @default.
- W4313442511 hasConcept C78519656 @default.
- W4313442511 hasConcept C88389905 @default.
- W4313442511 hasConcept C91602232 @default.
- W4313442511 hasConceptScore W4313442511C10138342 @default.
- W4313442511 hasConceptScore W4313442511C119857082 @default.
- W4313442511 hasConceptScore W4313442511C127413603 @default.
- W4313442511 hasConceptScore W4313442511C149782125 @default.
- W4313442511 hasConceptScore W4313442511C154945302 @default.
- W4313442511 hasConceptScore W4313442511C162324750 @default.
- W4313442511 hasConceptScore W4313442511C166957645 @default.
- W4313442511 hasConceptScore W4313442511C175025494 @default.
- W4313442511 hasConceptScore W4313442511C194872599 @default.
- W4313442511 hasConceptScore W4313442511C204036174 @default.
- W4313442511 hasConceptScore W4313442511C205649164 @default.
- W4313442511 hasConceptScore W4313442511C2779343474 @default.
- W4313442511 hasConceptScore W4313442511C2780299701 @default.
- W4313442511 hasConceptScore W4313442511C34736171 @default.
- W4313442511 hasConceptScore W4313442511C41008148 @default.
- W4313442511 hasConceptScore W4313442511C78519656 @default.
- W4313442511 hasConceptScore W4313442511C88389905 @default.
- W4313442511 hasConceptScore W4313442511C91602232 @default.
- W4313442511 hasLocation W43134425111 @default.
- W4313442511 hasOpenAccess W4313442511 @default.
- W4313442511 hasPrimaryLocation W43134425111 @default.
- W4313442511 hasRelatedWork W1963569934 @default.
- W4313442511 hasRelatedWork W1967342892 @default.
- W4313442511 hasRelatedWork W2078341953 @default.
- W4313442511 hasRelatedWork W2119825294 @default.
- W4313442511 hasRelatedWork W2159463023 @default.
- W4313442511 hasRelatedWork W2610839789 @default.
- W4313442511 hasRelatedWork W2964028848 @default.
- W4313442511 hasRelatedWork W3125877842 @default.
- W4313442511 hasRelatedWork W4206726836 @default.
- W4313442511 hasRelatedWork W4362674402 @default.
- W4313442511 isParatext "false" @default.
- W4313442511 isRetracted "false" @default.
- W4313442511 workType "book-chapter" @default.