Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313442531> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4313442531 endingPage "206" @default.
- W4313442531 startingPage "194" @default.
- W4313442531 abstract "COVID-19 is a viral disease caused by a new type of coronavirus called SARS-CoV-2. The World Health Organization (WHO) declared it a pandemic due to this disease spreading over many countries. Currently, there is no medicine available to prevent or cure infectious diseases. COVID-19 samples are commonly tested using reverse transcription polymerase chain reactions (RT-PCR), which are more expensive and take 24 hours to deliver either a positive or negative result. This chapter aims to develop a rapid and accurate medical diagnosis support system for COVID-19 in chest x-ray images by combining transfer learning techniques with the KNN algorithm. There are multiple approaches to building a classification system for analyzing radiographic images in deep learning. In this way, the knowledge acquired from a pre-trained convolutional neural network can be used to solve a new problem. Stacking is a machine learning method that combines the performances of the many transfer learning-based models to ensure the robustness of the proposed system." @default.
- W4313442531 created "2023-01-06" @default.
- W4313442531 creator A5002597746 @default.
- W4313442531 creator A5050766038 @default.
- W4313442531 creator A5066391397 @default.
- W4313442531 date "2023-01-03" @default.
- W4313442531 modified "2023-09-25" @default.
- W4313442531 title "COVID-19 Diagnosis Using Transfer Learning Techniques and Applications on Chest X-Ray Images" @default.
- W4313442531 cites W1811972587 @default.
- W4313442531 cites W1996153832 @default.
- W4313442531 cites W2023633872 @default.
- W4313442531 cites W2287147779 @default.
- W4313442531 cites W2552932238 @default.
- W4313442531 cites W2602030865 @default.
- W4313442531 cites W2767813285 @default.
- W4313442531 cites W2789509558 @default.
- W4313442531 cites W2810544698 @default.
- W4313442531 cites W2941521243 @default.
- W4313442531 cites W3007152212 @default.
- W4313442531 cites W3010278110 @default.
- W4313442531 cites W3013277995 @default.
- W4313442531 cites W3015058054 @default.
- W4313442531 cites W3017855299 @default.
- W4313442531 cites W3021622280 @default.
- W4313442531 cites W3026059552 @default.
- W4313442531 cites W3027764902 @default.
- W4313442531 cites W3038003980 @default.
- W4313442531 cites W3043643693 @default.
- W4313442531 cites W3105081694 @default.
- W4313442531 cites W3132499588 @default.
- W4313442531 cites W4214506025 @default.
- W4313442531 doi "https://doi.org/10.4018/978-1-6684-6060-3.ch015" @default.
- W4313442531 hasPublicationYear "2023" @default.
- W4313442531 type Work @default.
- W4313442531 citedByCount "0" @default.
- W4313442531 crossrefType "book-chapter" @default.
- W4313442531 hasAuthorship W4313442531A5002597746 @default.
- W4313442531 hasAuthorship W4313442531A5050766038 @default.
- W4313442531 hasAuthorship W4313442531A5066391397 @default.
- W4313442531 hasConcept C104317684 @default.
- W4313442531 hasConcept C108583219 @default.
- W4313442531 hasConcept C119857082 @default.
- W4313442531 hasConcept C121332964 @default.
- W4313442531 hasConcept C126838900 @default.
- W4313442531 hasConcept C142724271 @default.
- W4313442531 hasConcept C150899416 @default.
- W4313442531 hasConcept C154945302 @default.
- W4313442531 hasConcept C2779134260 @default.
- W4313442531 hasConcept C3008058167 @default.
- W4313442531 hasConcept C33347731 @default.
- W4313442531 hasConcept C36454342 @default.
- W4313442531 hasConcept C41008148 @default.
- W4313442531 hasConcept C46141821 @default.
- W4313442531 hasConcept C524204448 @default.
- W4313442531 hasConcept C55493867 @default.
- W4313442531 hasConcept C63479239 @default.
- W4313442531 hasConcept C71924100 @default.
- W4313442531 hasConcept C81363708 @default.
- W4313442531 hasConcept C86803240 @default.
- W4313442531 hasConceptScore W4313442531C104317684 @default.
- W4313442531 hasConceptScore W4313442531C108583219 @default.
- W4313442531 hasConceptScore W4313442531C119857082 @default.
- W4313442531 hasConceptScore W4313442531C121332964 @default.
- W4313442531 hasConceptScore W4313442531C126838900 @default.
- W4313442531 hasConceptScore W4313442531C142724271 @default.
- W4313442531 hasConceptScore W4313442531C150899416 @default.
- W4313442531 hasConceptScore W4313442531C154945302 @default.
- W4313442531 hasConceptScore W4313442531C2779134260 @default.
- W4313442531 hasConceptScore W4313442531C3008058167 @default.
- W4313442531 hasConceptScore W4313442531C33347731 @default.
- W4313442531 hasConceptScore W4313442531C36454342 @default.
- W4313442531 hasConceptScore W4313442531C41008148 @default.
- W4313442531 hasConceptScore W4313442531C46141821 @default.
- W4313442531 hasConceptScore W4313442531C524204448 @default.
- W4313442531 hasConceptScore W4313442531C55493867 @default.
- W4313442531 hasConceptScore W4313442531C63479239 @default.
- W4313442531 hasConceptScore W4313442531C71924100 @default.
- W4313442531 hasConceptScore W4313442531C81363708 @default.
- W4313442531 hasConceptScore W4313442531C86803240 @default.
- W4313442531 hasLocation W43134425311 @default.
- W4313442531 hasOpenAccess W4313442531 @default.
- W4313442531 hasPrimaryLocation W43134425311 @default.
- W4313442531 hasRelatedWork W2996856019 @default.
- W4313442531 hasRelatedWork W3012459282 @default.
- W4313442531 hasRelatedWork W3018421652 @default.
- W4313442531 hasRelatedWork W3021430260 @default.
- W4313442531 hasRelatedWork W3091976719 @default.
- W4313442531 hasRelatedWork W3192840557 @default.
- W4313442531 hasRelatedWork W4220996320 @default.
- W4313442531 hasRelatedWork W4285149559 @default.
- W4313442531 hasRelatedWork W4312200629 @default.
- W4313442531 hasRelatedWork W4382286161 @default.
- W4313442531 isParatext "false" @default.
- W4313442531 isRetracted "false" @default.
- W4313442531 workType "book-chapter" @default.