Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313442687> ?p ?o ?g. }
- W4313442687 endingPage "113418" @default.
- W4313442687 startingPage "113418" @default.
- W4313442687 abstract "Florida's Big Bend region is home to the second largest contiguous seagrass bed in the continental United States, but the extent and integrity of this seagrass bed is declining as a result of degraded water clarity. Seagrass beds provide important ecological services and support high levels of biodiversity, thus monitoring the spatial and temporal variability of water clarity in the Big Bend region, particularly during the seagrass growth season (April to October), is of vital importance. Satellite remote sensing of coastal water clarity is often challenging due to the optical complexity and heterogeneity of coastal regions as well as frequent clouds and sun glint in the satellite imagery. As such, we developed machine learning (ML) approaches to derive the diffuse attenuation coefficient at 490 nm [Kd(490)] from satellite data with partial atmospheric correction. Traditionally, such algorithms would be developed to capture the full range and variation of the parameter of interest. Here, we demonstrate deficiencies in this method, and instead advocate for an alternate approach which leverages seagrass light requirements to improve the algorithm design. Specifically, we developed and implemented a 2-stage ML approach, which first classifies the coastal water into two types, then retrieves Kd(490) for the water type within which measurable changes in water clarity may impact seagrass health. We developed and compared the traditional ML approach and the proposed 2-stage ML approach based on data from MODIS/Aqua, OLCI/Sentinel-3A, and VIIRS/SNPP. Given the outperformance of the 2-stage ML approach, we applied it to the MODIS/Aqua data archive (2003−2020) to generate time-series Kd(490) maps and analyzed how often different areas across the Northern Big Bend region are suitable for seagrass growth each year. The derived information is important toward understanding how the spatial and temporal variation in light availability impacts seagrass growth and distribution in the study region, while the 2-stage ML approach appears applicable to other coastal regions with similar optical complexity." @default.
- W4313442687 created "2023-01-06" @default.
- W4313442687 creator A5005634830 @default.
- W4313442687 creator A5026416332 @default.
- W4313442687 creator A5053057183 @default.
- W4313442687 creator A5059764251 @default.
- W4313442687 creator A5087801712 @default.
- W4313442687 date "2023-03-01" @default.
- W4313442687 modified "2023-09-24" @default.
- W4313442687 title "Water clarity monitoring in complex coastal environments: Leveraging seagrass light requirement toward more functional satellite ocean color algorithms" @default.
- W4313442687 cites W161520972 @default.
- W4313442687 cites W1971997642 @default.
- W4313442687 cites W1972928352 @default.
- W4313442687 cites W1999676742 @default.
- W4313442687 cites W2001359375 @default.
- W4313442687 cites W2010917519 @default.
- W4313442687 cites W2013305213 @default.
- W4313442687 cites W2013710869 @default.
- W4313442687 cites W2028627221 @default.
- W4313442687 cites W2029517431 @default.
- W4313442687 cites W2030003258 @default.
- W4313442687 cites W2035623332 @default.
- W4313442687 cites W2037424078 @default.
- W4313442687 cites W2047768727 @default.
- W4313442687 cites W2058447011 @default.
- W4313442687 cites W2074406091 @default.
- W4313442687 cites W2075608300 @default.
- W4313442687 cites W2081892573 @default.
- W4313442687 cites W2083443605 @default.
- W4313442687 cites W2085165617 @default.
- W4313442687 cites W2092031707 @default.
- W4313442687 cites W2093580555 @default.
- W4313442687 cites W2094785904 @default.
- W4313442687 cites W2094825746 @default.
- W4313442687 cites W2095246401 @default.
- W4313442687 cites W2097542185 @default.
- W4313442687 cites W2112815315 @default.
- W4313442687 cites W2125719113 @default.
- W4313442687 cites W2126184275 @default.
- W4313442687 cites W2131752879 @default.
- W4313442687 cites W2136758825 @default.
- W4313442687 cites W2139095875 @default.
- W4313442687 cites W2153635508 @default.
- W4313442687 cites W2155005486 @default.
- W4313442687 cites W2567418512 @default.
- W4313442687 cites W2734920418 @default.
- W4313442687 cites W2783663003 @default.
- W4313442687 cites W2891805585 @default.
- W4313442687 cites W2899762629 @default.
- W4313442687 cites W2914527789 @default.
- W4313442687 cites W3009355673 @default.
- W4313442687 doi "https://doi.org/10.1016/j.rse.2022.113418" @default.
- W4313442687 hasPublicationYear "2023" @default.
- W4313442687 type Work @default.
- W4313442687 citedByCount "2" @default.
- W4313442687 countsByYear W43134426872023 @default.
- W4313442687 crossrefType "journal-article" @default.
- W4313442687 hasAuthorship W4313442687A5005634830 @default.
- W4313442687 hasAuthorship W4313442687A5026416332 @default.
- W4313442687 hasAuthorship W4313442687A5053057183 @default.
- W4313442687 hasAuthorship W4313442687A5059764251 @default.
- W4313442687 hasAuthorship W4313442687A5087801712 @default.
- W4313442687 hasConcept C107826830 @default.
- W4313442687 hasConcept C110872660 @default.
- W4313442687 hasConcept C127413603 @default.
- W4313442687 hasConcept C146978453 @default.
- W4313442687 hasConcept C185592680 @default.
- W4313442687 hasConcept C18903297 @default.
- W4313442687 hasConcept C19269812 @default.
- W4313442687 hasConcept C205649164 @default.
- W4313442687 hasConcept C2777146004 @default.
- W4313442687 hasConcept C2777400808 @default.
- W4313442687 hasConcept C2778102629 @default.
- W4313442687 hasConcept C39432304 @default.
- W4313442687 hasConcept C41008148 @default.
- W4313442687 hasConcept C55493867 @default.
- W4313442687 hasConcept C62649853 @default.
- W4313442687 hasConcept C86803240 @default.
- W4313442687 hasConceptScore W4313442687C107826830 @default.
- W4313442687 hasConceptScore W4313442687C110872660 @default.
- W4313442687 hasConceptScore W4313442687C127413603 @default.
- W4313442687 hasConceptScore W4313442687C146978453 @default.
- W4313442687 hasConceptScore W4313442687C185592680 @default.
- W4313442687 hasConceptScore W4313442687C18903297 @default.
- W4313442687 hasConceptScore W4313442687C19269812 @default.
- W4313442687 hasConceptScore W4313442687C205649164 @default.
- W4313442687 hasConceptScore W4313442687C2777146004 @default.
- W4313442687 hasConceptScore W4313442687C2777400808 @default.
- W4313442687 hasConceptScore W4313442687C2778102629 @default.
- W4313442687 hasConceptScore W4313442687C39432304 @default.
- W4313442687 hasConceptScore W4313442687C41008148 @default.
- W4313442687 hasConceptScore W4313442687C55493867 @default.
- W4313442687 hasConceptScore W4313442687C62649853 @default.
- W4313442687 hasConceptScore W4313442687C86803240 @default.
- W4313442687 hasLocation W43134426871 @default.
- W4313442687 hasOpenAccess W4313442687 @default.
- W4313442687 hasPrimaryLocation W43134426871 @default.
- W4313442687 hasRelatedWork W1411828795 @default.