Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313442775> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4313442775 endingPage "110218" @default.
- W4313442775 startingPage "110218" @default.
- W4313442775 abstract "The Combined Algorithm Selection and Hyperparameter Optimization problem, in short, CASH, seeks the most suitable classifiers and hyperparameters for the underlying classification problems. In current literature, the common approaches in dealing with CASH problem are conducted via search-based methods such as sequential model-based optimization (SMBO) along with various active tests. Different from current existing approaches, in this paper, we propose a new method by incorporating the so-called denoising autoencoder (DAE) approach into meta-learning (MtL) for automatic configuration (both algorithms and their hyperparameters) recommendation, which appears to be quite effective compared to standard search-based approaches. More specifically, we set up the configuration search space for CASH and produce the metadata, and generate the classification performance on a set of collected historical datasets. Then both encoder and decoder in the DAE system are trained with the masked metadata as inputs and the unmasked metadata as targets to extract the subtle latent variables of metadata and recover the unmasked inputs subsequently. Under our framework, the performance over the entire configuration space can be predicted effectively through two different settings, and the configuration with the highest predictive performance is thus recommended. The first recommendation approach is by inactivating some inputs and then to recover their entries via the trained encoder and decoder for new problems, while in the second approach, the relationship between the acquired latent variables and the meta-features of historical datasets via kernel multivariate multiple regression (MMR) is enacted, leading to the performance estimation of new datasets being pursued directly through MMR and the decoder of DAE without requiring any new configuration evaluations. An automatic classification configuration recommendation system, including 81 historical problems and 11 common classifiers with a total of 4983 configurations, is established to show the effectiveness of our proposed approach. The comparative results on 45 testing problems demonstrate that our proposed model has the superior recommendation capacity in terms of the baselines for existing MtL as well as other search-based approaches." @default.
- W4313442775 created "2023-01-06" @default.
- W4313442775 creator A5006353150 @default.
- W4313442775 creator A5008007155 @default.
- W4313442775 date "2023-02-01" @default.
- W4313442775 modified "2023-10-16" @default.
- W4313442775 title "Latent feature learning via autoencoder training for automatic classification configuration recommendation" @default.
- W4313442775 cites W1471542436 @default.
- W4313442775 cites W1987971958 @default.
- W4313442775 cites W1988790447 @default.
- W4313442775 cites W2010770252 @default.
- W4313442775 cites W2078626246 @default.
- W4313442775 cites W2089213632 @default.
- W4313442775 cites W2112204321 @default.
- W4313442775 cites W2133990480 @default.
- W4313442775 cites W2151554678 @default.
- W4313442775 cites W2157069634 @default.
- W4313442775 cites W2166107799 @default.
- W4313442775 cites W2563364594 @default.
- W4313442775 cites W2768408766 @default.
- W4313442775 cites W2817593237 @default.
- W4313442775 cites W2895357514 @default.
- W4313442775 cites W2911964244 @default.
- W4313442775 cites W2966284335 @default.
- W4313442775 cites W4212883601 @default.
- W4313442775 cites W4236137412 @default.
- W4313442775 cites W4239510810 @default.
- W4313442775 doi "https://doi.org/10.1016/j.knosys.2022.110218" @default.
- W4313442775 hasPublicationYear "2023" @default.
- W4313442775 type Work @default.
- W4313442775 citedByCount "0" @default.
- W4313442775 crossrefType "journal-article" @default.
- W4313442775 hasAuthorship W4313442775A5006353150 @default.
- W4313442775 hasAuthorship W4313442775A5008007155 @default.
- W4313442775 hasConcept C101738243 @default.
- W4313442775 hasConcept C10485038 @default.
- W4313442775 hasConcept C108583219 @default.
- W4313442775 hasConcept C111919701 @default.
- W4313442775 hasConcept C114614502 @default.
- W4313442775 hasConcept C119857082 @default.
- W4313442775 hasConcept C12267149 @default.
- W4313442775 hasConcept C124101348 @default.
- W4313442775 hasConcept C153180895 @default.
- W4313442775 hasConcept C154945302 @default.
- W4313442775 hasConcept C177264268 @default.
- W4313442775 hasConcept C199360897 @default.
- W4313442775 hasConcept C33923547 @default.
- W4313442775 hasConcept C41008148 @default.
- W4313442775 hasConcept C74193536 @default.
- W4313442775 hasConcept C8642999 @default.
- W4313442775 hasConcept C93518851 @default.
- W4313442775 hasConceptScore W4313442775C101738243 @default.
- W4313442775 hasConceptScore W4313442775C10485038 @default.
- W4313442775 hasConceptScore W4313442775C108583219 @default.
- W4313442775 hasConceptScore W4313442775C111919701 @default.
- W4313442775 hasConceptScore W4313442775C114614502 @default.
- W4313442775 hasConceptScore W4313442775C119857082 @default.
- W4313442775 hasConceptScore W4313442775C12267149 @default.
- W4313442775 hasConceptScore W4313442775C124101348 @default.
- W4313442775 hasConceptScore W4313442775C153180895 @default.
- W4313442775 hasConceptScore W4313442775C154945302 @default.
- W4313442775 hasConceptScore W4313442775C177264268 @default.
- W4313442775 hasConceptScore W4313442775C199360897 @default.
- W4313442775 hasConceptScore W4313442775C33923547 @default.
- W4313442775 hasConceptScore W4313442775C41008148 @default.
- W4313442775 hasConceptScore W4313442775C74193536 @default.
- W4313442775 hasConceptScore W4313442775C8642999 @default.
- W4313442775 hasConceptScore W4313442775C93518851 @default.
- W4313442775 hasFunder F4320306076 @default.
- W4313442775 hasLocation W43134427751 @default.
- W4313442775 hasOpenAccess W4313442775 @default.
- W4313442775 hasPrimaryLocation W43134427751 @default.
- W4313442775 hasRelatedWork W3044458868 @default.
- W4313442775 hasRelatedWork W3047644063 @default.
- W4313442775 hasRelatedWork W3136238191 @default.
- W4313442775 hasRelatedWork W4213225422 @default.
- W4313442775 hasRelatedWork W4220775285 @default.
- W4313442775 hasRelatedWork W4280535922 @default.
- W4313442775 hasRelatedWork W4283697347 @default.
- W4313442775 hasRelatedWork W4291365775 @default.
- W4313442775 hasRelatedWork W4295309597 @default.
- W4313442775 hasRelatedWork W4298144215 @default.
- W4313442775 hasVolume "261" @default.
- W4313442775 isParatext "false" @default.
- W4313442775 isRetracted "false" @default.
- W4313442775 workType "article" @default.